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ABSTRACT 

;t as In this study, a dynamic recurrent neural network was calibrated by the rainfall-runoff 
fthe records of selected typhoon events. The calibrating process of a dynamic recurrent neural 
lat it network includes two steps: firstly, the structure of a dynamic recurrent neural network was 

the calibrated according to the selected typhoon records and determined the initial weights of a 
riate 	 dynamic recurrent neural network; secondly, according to the results of former step, the initial 

weights of an artificial neural network was determined. Finally, more rainfall-runoff records 

of typhoon events, except training sets, were utilized to validate the network, and a further 

discussion about the transition of the unit hydrograph of a watershed was performed. The 
they 	 analytical approaches adopted and results achieved in this study can be applied in the 
e. 	 planning of agricultural water resources. 

Keywords: State space, Recursion, Artificial neural networks. 
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1. INTRODUCTION 

Flood walls, water pump stations, flood gates, and other engineering structures are often 

built along the shores of Taiwan's rivers to protect vast amount of farmland. Each year, 

when flooding occurs as a result of typhoons, flood gates must be able to shut prior to the 
and 

peak flooding time to allow people and machinery to be safely relocated on to shore. The
:tnd 

modeling of the rainfall-runoff process to predict the possible time of flooding has become 

one of the agricultural sector's main research topics in terms of water management.
Ion 

Typically, an artificial neural network is used to model and predict rainfall-runoff process, but 
tng 

such network does not provide for a mechanism which calculates the amount of current
md 

rainfall that will translate into potential runoff. We have replaced traditional static neural 

networks with dynamic recurrent neural networks for this study to better understand the 

working mechanics behind hydrological systems, and hoping to increase the accuracy in 

modeling the rainfall-runoff process. 

The rainfall-runoff process can be viewed as a cause and effect relationship based on 
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time in the hydrological cycle system. This relationship can be separated into a physical 

model and a black-box model. Data produced from the physical model is based upon the 

physics of the rainfall-runoff process. Thus, it requires complete control of the physical 

mechanics of the rainfall-runoff process in order to model the relationship. In fact, the 

physical mechanism of rainfall-runoff processes is caused by hydrometeorological and 

geomorphological factors. Generally, physical model can answer questions about the 

watershed before even physically altering it (Chow et at., 1964; Chow et al., 1988). However, 

black-box models ignore the complex physical mechanism and directly determine the 

optimum parameters of black-box models from the input/output relation of a rainfall-runoff 

system. Applying neural networks to describe rainfall-runoff processes is one of the manners 

based on black-box models. 

Research regarding neural networks within hydrological field is very vast. But a vast 

majority of the research only focuses on static neural network's ability to memorize, sort, and 

understand the data collected. The majority of the research overlooks hydrological cycle as 

a dynamic system. The rainfall-runoff process is a small process in the entire hydrological 

system. Thus, compared to the traditional static neural network, the neural network allows 

has the ability to model the rainfall-runoff process because of its dynamic recursive equation 

that provides the dynamic-system character. This is a much better mechanism for operating a 

realistic system. Not only does one need to know the relationship between inputs and 

outputs, one must also understand the changes within the system to have a grasp of the entire 

system. Therefore, dynamic recurrent neural network uses it unique calculation model to not 

only provides output data, but also, the changing process of the rainfall-runoff process. 

2. BASIC THEORIES 

2.1 Dynamic Recurrent Neural Networks 

Dynamic recurrent neural networks are neural networks with one or more feedback loops 

which can be of a local or global type. The architecture of a dynamic recurrent neural network 

consists of six components: neurons, activation functions, layers, connections, architectures, 

and a clock. A neuron is a standalone unit that performs a static map between the input and 

output through an activation function that can be linear or nonlinear function. Remember that 

the dynamics of the network comes from the connections among neurons, not the neurons 

themselves (Haykin and Simon, 1999). A collection of neurons arranged conveniently in a one 

dimensional array is called a layer. Generally, a dynamic recurrent neural network includes an 

input layer, an output layer, and hidden layers. The greater the number of hidden layers 

embedded in a dynamic recurrent neural network, the greater the complexity of the model. No 

matter if they are in the same layer or not, the transference of messages between two neurons 
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physical is performed through a connection that would be a local (in the same layer) or global 

upon the connection (in the different layer). Additionally, an arrangement of neurons interconnected by 

physical connections in space is named architecture. In view of time domain, there is a global clock 

fact, the controlling the operation of all the neurons in the architecture. At the tick of the clock pulse, 

gical and all neurons will perform the designated computation. These computations will be completed 

tbout the by the end of the clock pulse. 

However, For the purpose of investigating the transition of rainfall-runoff systems, the dynamic 

mine the recurrent neural network adopted here is embedded in a state space form. The dynamic 

:all-runoff recurrent neural network in state space form comprises two main advantages (Zamarreiio, 

~ manners 2000): 

Being a neural model, it has the flexibility to learn and represent any function. 

But a vast Being a state space model, the number of outside connections is minimal. The inputs will 

,sort, and be the causes that drive the system operation and the outputs will be the effects observed on 

11 cycle as the system. Parallel inputs/outputs (causes/effects) are established between the neural model 

drological and the physical system. 

Irk allows The dynamic recurrent neural network is composed of five layers: input layer, hidden 

~ equation layer S, state layer, hidden layer 0, and output layer. The input layer takes the input signals 

perating a and delivers these inputs to every neuron in the next layer, hidden layer S, which represents 

Ilputs and any function that specifies the states' behavior. State layer receives the signals from hidden 

'the entire layer S, and each neuron in this layer represents one state whose output value is the value of 

ldel to not the state. After hidden layer 0, which represents the features that relates the outputs of the 
,5. neural network to the states, gets the signals from state layer, output layer takes the hidden 

layer °signals adds them to each output neuron. These outputs are, finally, the outputs of the 

dynamic recurrent neural network in state space form as Fig. 1. 
input hidden S state hidden 0 output 

lack loops 

~ 
W 

Ir 

~ 
w 
W 

J?2 

LfJ wa·EJ.... x 
w 

• ~y 

II network LIN: Linear Processing Elements 

litectures, 
NL: Non-linear Processing Elements (Sigmoid) 

input and 

mber that Fig. 1. Block scheme of the dynamic recurrent neural network in state space form. Each block 

~ neurons represents a layer of neurons. 

YIII a one 

eludes an 
The mathematical representation of a deterministic system in state space form is 

en layers 

lodel. No 

Xk+l F(Xk,Uk), 

Yk = G(Xk)' 

(1) 

(2) 

) neurons 
where Uk' Yk' and xk with m, I, and n ranks denote, respectively, the input, outpu1 
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and state vectors at time k. F: n xm ~ nand G: n ~ I are two static mappings. 

Every linear/non-linear function can be represented by a neural network containing a 

single hidden layer composed of neurons whose transfer function is bounded (Zamarrefio, 

2000). Therefore, the mathematical form of the dynamic recurrent neural network embedded 

state space form can be written as 

Xk~1 = Wh -.t;{w r 
-Xk +Wi -Uk + Bh), (3) 

Yk WO -fz{W h2 -Xk +Bh2), (4) 

W O W h2where Wh, wr, Wi, , and are matrices with dimensions nxh, hxn, hxm, 

m xh2, and h2 x n as the weights of the dynamic recurrent neural network in state space 

form, respectively. Bh and Bh2 are two vectors with hand h2 elements as biases. It 
and 12 are two functions (linear/nonlinear) for describing the behavior of the system. 

2.2 Realization of a linear dynamic system 

Consider the linear, discrete, time invariant, multivariable system with state space 

representation 

Xk+1 = AXk +BUk , (5) 

Yk = CXk +Duk, (6) 

where Ut , Yt, and xt with m, I, and n ranks denote, respectively, the input, output, and 

state vectors at time t. In addition, A, B, C, and D with n x n, n x m, I x n, and I x m 

ranks are system matrices. The state vectors are composed of a set of state variables whose 

values are supposed to contain sufficient information to predict the future evolution of the 

system (Andras and Szollosi-nagy, 1982). 

A dynamic system is a system whose state varies with time. Therefore, the motion of a 

system can be described as the motion of a point in an n-dimensional state space. In other 

words, a dynamic system described as n-order differential equations must have n-independent 

variables, and we can adequately represent the motion of the system as soon as the time 

response of the n-independent variables is carried out. 
Through replacing the term in observed equation (6) with solving the state equation xk 

(5) recursively, the output response of the system is given by 
k 

Yk =CAkxo+ "LCAP-IBuk_p +Duk, (7) 
p=1 

and for systems initially at rest, i.e., Xo 0, equation (7) is rewritten as 
k 

Yk ="Lhpuk_P, (8) 
p=o 

where the Markov parameters are given by 

kcl 
(9) 

k=l 
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The equation (9) shows the relationship between the system responses of a unit impulse 
ning a and system matrices that will be used to present the transition of a unit hydrograph (Cooper 

UTefio, and Wood, 1982). 

ledded 

(3) 
3. EXAMPLE 

(4) 
The upstream watershed of Wu-Tu was chosen as the study area for evaluating the 

ftx m, 
rainfall-runoff simulating ability of the three models. The watershed surrounds the city of 

space 
Taipei in the north of Taiwan, as illustrated in Fig. 2. The area of the Wu-Tu watershed is 

~s. 1; 
about 204 km2

. The mean annual precipitation and runoff depth are 2,865 mm and 2,177 

mm, respectively. Owing to the rugged topography of the watershed, the runoff path-lines are 

short and steep, and the rainfall is non-uniform in both time and space. Large floods arrive 

rapidly in the middle-to-downstream reaches of the watershed, causing serious damage. 
space 

(5) \\ u~ T\: 
{l ")':';~"'''';h Ol 

(6) 

t, and 

lxm 

vhose 

)f the 

lofa 

other • Kningaugc 

• DlS<:hargc SHe 
Ident 

Location Map 
time 

Fig. 2. The maps ofWu-Tu watershed showing the study area near Taipei, Taiwan. ltion 

The Wu-Tu watershed contains three rain gauges (lui-Fang, Wu-Tu and Huo-Shao-Liao) 

and one discharge site (Wu-Tu), and the 41 rainfall-runoff events with 2,944 data recorded (7) 
between 1966 and 1997 were used herein as the study sample. 

In these 41 rainfall-runoff events, there were 32 typhoons and 9 storms while all events 

can also be classed as 14 multi-peak and 27 single-peak events. The models we studied are (8) 

fed average rainfall (mm) and runoff (m3/s) hourly as the input and the output. The average 

rainfall is calculated from the rainfall of three rain gauges via Kriging method (Cheng, 2002). 

The study procedure can be separated into two parts: firstly, the indirect system 
9) identification is utilized to calibrate the parameters of a state space model (Wang and Pan, 

2001), and a dynamic recurrent neural network is constructed based on the state space model; 
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secondly, the dynamic recurrent neural network is applied to simulate rainfall-runoff 

processes, and a new learning method developed from the interchange of the roles of the 

network states and the weight matrix is applied to train the neural networks (Amir and 

Alexander, 2000). The flowchart is shown in Fig. 3. Furthermore, for the purpose of 

investigating the applicability of the dynamic recurrent neural network, three kinds of models 

were adopted here to simulate rainfall-runoff processes. There are a state space model, a 

dynamic recurrent neural network whose initial weights are generated randomly (denoted as 

DRNN(l», and a dynamic recurrent neural network whose initial weights are determined via 

indirect system identification (denoted as DRNN(2», respectively. 

I..­...­..--M;;;iid~~iffi-;;;ti,;~--·-······l f"··-····-·-···-·-···M;;;;~i;;;;i;;t;;;~-;;;d~~ii~;-;,-;;;~i;;~·-·-·--'--"-'-'-1 

i I ~Co-n~-c-t.~~ 
1 Ic~nstrained deconvolution step! iri------K. e optimum DR~ 

lJ !
i ~U:unit hydrograph// l 
l /.~-~-.. ,/ i 

; I : !::.: r----~ :
i I Realization step I i 

I ~~lc-_ .CJ I I 
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Fig.3. The flowchart of the generation and application ofa DRNN(2). 

The performances of rainfall-runoff simulations of the three models were evaluated via 

four criteria as follows: 

( a) coefficient of efficiency, CE, is defined as 

(10) 

where Qest.k denotes the discharge of the simulated hydrograph for time index k (m3/s), 

Qohs k is the discharge of the observed hydrograph for time index k (m3Is), and Qohs is the 

mean of the discharge of the observed hydrograph during whole event period K. The better the 

fit, the closer CE is to 1. 

(b) The error of peak discharge, EQp (%), is defined as 

Qp,est -Qp,ohs xl 00% 
Qp.obs ' 

(11) 
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where Qp,est denotes the peak discharge of the simulated hydrograph (m3/s) and Qp,Obs IS 

the peak discharge of the observed hydrograph (m3/s). 

(c) The error of the time for peak to arrive, ETp, is defined as 

(12) 

where Tp,est denotes the time for the simulated hydrograph peak to arrive (hours) and Tp,Obs 

represents the time required for the observed hydrograph peak to arrive (hours). 

(d) The error of total discharge volume, VER(%), is defined as 

( ±Q,st,k ­ ±QobS,k) 
VER(%)= k=l K k=l x 100%, (13) 

"LQObs,k 
k=l 

denotes the discharge of the simulated hydrograph for time index k (m3/s), 

Qobs,k is the discharge of the observed hydrograph for time index k (m3/s). The better the fit, 

the closer EQp. E]~ and VER are to o. 

4. RESULTS AND DISCUSSIONS 

The purpose of this study is to apply a dynamic recurrent neural network, calibrated by 

indirect system identification, to simulate rainfall-runoff processes. Furthermore, unit 

hydrographs are represented from the weights of the dynamic recurrent neural network based 

on equation (9). One state space model and two dynamic recurrent neural networks (DRNN(1) 

and DRNN(2» are adopted to compare the performance of rainfall-runoff simulation and the 

comparison is discussed later. 

4.1 Calibration of a Dynamic Recurrent Neural Network 

For setting up a DRNN(2), ten events from 1966 to 1971 are selected to calibrate models 

via indirect system identification, and a singular value plot, shown as Fig. 4 is obtained during 

the indirect system identification. From the Fig. 4, the first two singular values are significant 

hence DRNN(2) has at least 2 neurons in its hidden layer. However, the other singular values 

do not go down dramatically that causes the optimum number of neurons in hidden layer is 

not easily gotten. Therefore, the relation between coefficient of efficiency and number of 

neurons in hidden layer of a DRNN(2) is illustrated as Fig. 5, and 6 neurons in hidden layer 

are selected as the optimum DRNN(2) according to this figure. 
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Fig. 4. Singular value plot. 

The combination of neural networks and indirect system identification to recognize the 

appropriate DRNN(2) is proposed in this paper. Generally, the weights of a neural network are 

generated randomly and are set as initial weights after training. However, indirect system 

identification not only offers a efficient way to design the appropriate number of neurons in 

the hidden layer of a DRNN(2), but also determines the weights of the DRNN(2) without 

training procedure. 

4.2 The Realization of a Unit Hydrograph 

One of the advantages of applying dynamic recurrent neural networks to simulate 

rainfall-runoff processes is the capacity for on-line learning. Through the realization of a 

linear system, the changes of the weights of a DRNN can be transformed into the transition of 

unit hydrographs and the result is shown as Fig. 6. In Fig. 6, three unit hydrographs are 

original discrete unit hydrograph directly carried out by linear programming, the unit 

hydrograph realized from DRNN(2) before on-line learning, and the unit hydrograph realized 

from DRNN(2) after on-line learning, respectively. 

l 
0.88 

0.84 

0.8 

o 	 2 4 6 8 10 
Order 

Fig. 5. The relation between coefficient of 
efficiency and number of neurons in 
hidden layer ofa D~'N. 
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Fig. 6. The transition of unit hydrographs during Amber typhoon event of 29 August 1997 on 

the Wu-Tu watershed. 

Obviously, in the tail of the original discrete unit hydrograph appears an oscillation 

caused by linear programming. However, the other unit hydrographs realized from DRNN(2) 

are smoother because the indirect system identification diminishes the high-order noise 

through selection of the significant singular values from singular value plot. In other words, 

unit hydrographs derived from DRNN(2) are nearer physical unit hydrographs than the 

discrete unit hydrograph carried out by linear programming. Furthermore, the two unit 

hydrographs realized from DRNN(2) show the capacity of on-line learning. After on-line 

learning, the unit hydrograph derived from DRNN(2) after on-line learning appears closer to 

original discrete unit hydrograph than before on-line learning. 

4.3 Rainfall-runoff Simulation 

41 rainfall-runoff events of Wu-Tu watershed are simulated by three models: state space 

model, DRNN(l), and DRNN(2). The simulated hydrographs (Amber typhoon event on Aug. 

29, 1997) are shown as Fig. 7, and the performances evaluated by four criteria are listed as 

Table 1. From Fig. 7, the upper x-axis shows the rainfall series that cause the runoff series on 

lower x-axis, and the causal relationship implies that the runoff series should reveal the trend 

of rainfall series, no matter what hydrological model adopted. In other words, even the 

rainfall-runoff event is multi-peaks, the performance of simulation is good when the trends of 

rainfall and runoff are similar. Furthermore, Fig. 6 also shows that the dynamic recurrent 

neural networks perform better than a state space model because dynamic recurrent networks 

can modify the weights on-line. 
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Fig. 7. Example of rainfall and runoff observations and simulations during Amber typhoon. 

Table 1. Absolute averages of criteria. 

absolute avera&es of criteria
model 

CE EQQ~%2 ETQ~hourl VER~%2 


DRNN(l) 0.8993 13.1369 1.1250 3.6090 

DRNN(2) 0.8812 15.1128 1.3438 4.0181 


SS 0.8506 15.5575 1.4063 3.3474 
DRNN(l): DRNN constructed by trial-and-error method 

DRNN(2): DRNN constructed by indirect system identification 

SS: state space model 

From Table 1, DRNN(1) performs best all criteria, except VER; the performance of 

DRNN(2) is close to DRNN(1). To compare DRNN(1) and DRNN(2), both neural networks 

adopt the same on-line learning algorithm, but the performances are different. The main 

reason is initial weights. The major difference between DRNN(1) and DRNN(2) is the 

weights of the recurrent links among the hidden layer. The weights ofDRNN(I) are generated 
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randomly, and that gives the dynamic recurrent neural network more elasticity to capture the 

character of a dynamic system on-line. However, considering the calibration procedure and 

the validation procedure, DRNN(2) is recommended because applying indirect system 

identification helps to calibrate a dynamic recurrent neural network quickly. 

5. CONCLUSION 

In this paper, dynamic recurrent neural networks are adopted to simulate rainfall-runoff 

processes, and an indirect system identification is proven as an efficient algorithm to 

recognize the optimum structure of a dynamic recurrent neural network and determine the 

weights of networks without training processes. Furthermore, the capacity for unit hydrograph 

representation, that helps to regain more information from the weights of the DRNN, is 

endowed with the DRNN. Finally, the transition of rainfall-runoff processes can be presented 

from the change of unit hydrographs that are realized from the weights of the DRNN 

modified via on-line learning. 
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