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Abstract 

The objective of this study was to quantify the impact of alternate wetting and drying irrigation 
(AWD) and timing ofN-fertilizer application on rice growth, water input, water productivity 
and fertilizer-use efficiency. The experiment was carried out in 1999 and 2000 in linhua, Zhejiang 
Province and in Tuanlin (TL), Hubei Province, following a split-plot design. The main plots 
were 2 water treatments (W, = AWD irrigation, W

2 
continuous flooding). The subplots 

consisted offour N-application treatments (Fo control, no N fertilizer; F, "" 2 splits, as farmers 
practice; F2 4 splits and F

J 
5 or 6 splits depending on the season). The total N input in all 

seasons was 150 and 1:-;0 kg N ha'! in linhua and TL, respectively. 
Grain yields varied from 3.2 to 5.8 tons ha· j in linhua, while higher grain yields were 

obtained in TL (4.5 to 9.1 tons ha·). In both sites, there were no significant water-nutrient 
interactions on grain yields, biomass and N uptakes. In most cases, continuous flooding gave 
1-7% higher yields than A WD, but the reverse was true in TL for 2000. However, the difference 
in yield was not statistically significant at 5% level. The AWD reduces irrigation water compared 
to continuous flooding. The differences were statistically significant only in 2000 when rainfall 
was low and evaporation demand was high. Water productivity in terms of irrigation water 
was about 5-35% higher under AWD than in continuous flooding but differences were 
significant only in the year 2000. 

Increasing the number of splits to 4--6 times (i.e., Fj-·F
j 

) increased the total N uptake, 
but not grain yield and biomass compared to farmers' practices of2 splits. This may reflect the 
inability of the studied rice varieties to convert N taken up into grain. 
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We concluded that under the experimental conditions, AWD irrigation did not reduce 
rice yield but increased the water productivity. This increase may become more pronounced in 
drier conditions. The AWD did not require a different N-fertilizer management from continuous 
flooding. 

Introduction 

Irrigation has played a critical role in the increase of rice production in China. Irrigated rice 
produces 96% of the annual rice production of 130.6 million tons in 1990 (Rose grant et al. 
1995). Despite having the most intensive rice irrigation in the world, per capita freshwater 
availability in China is among the lowest in Asia. Rapid industrialization and urbanization will 
further divert water from agricultural use. The need for "more rice with less water" is crucial 
for food security and is more urgent in China than in many other Asian countries. 

Recognizing the severity of the situation, the government and the people of the P. R. 
China have already pioneered various water-saving irrigation (WSI) technologies to achieve 
more water-efficient irrigation for rice-based systems. One of the most commonly practiced 
WSI techniques is AWD irrigation. This irrigation method is characterized by a) a mid-season 
drainage during the late tillering stage of the crop and b) periodic soil drying of 2-4 days in 
between irrigation events from panicle initiation (PI) on to harvest (figure 1). In the mid-season 
drainage, the soil is dried out for 10-15 days, depending on the weather condition until some 
fine cracks appear at the soil surface (Mao Zhi et aL 2000), Xu (1982), Wei and Song (1989) 
and Mao Zhi (1 993a ) reported that mid-season drainage and intermittent drying of the soil 
improved rice yield compared to the traditional irrigation practices with continuous flooding. 
In fact, the superiority of the AWD irrigation in terms of yield has been reported as one of the 
main reasons for farmers' acceptance of the new technology. A combination of reduced water 
input and increased yield resulted in substantial increases in water productivity with respect 
to irrigation water. The increase in yield under AWD irrigation in China substantially differs 
from the results reported elsewhere (e.g., Mishra et al. 1990; Tabbal et al. 1992; Bouman and 
Tuong 2001). Most of the Chinese literature attributes the increase in yield by AWD irrigation 
to the improvement of the microenvironment of the root zone. There is, however, no scientific 
evidence to support this reasoning. One possible hypothesis is that, compared to inbred rice, 
the hybrid rice varieties used in China are more drought-resistant and make better use of 
nitrogen fertilizer in the form of nitrate (as a result of the nitrification process taking place 
during the drying periods of Awn irrigation). 

There is also evidence that rice cultivation with AWD irrigation has very low fertilizer­
use efficiency. Wang et al. (1998) reported that the N recovery efficiency in China is only about 
29% in early rice and 5% in late rice in Jinhua, Zhejiang Province. High nitrogen losses could 
be due to a combination of the present fertilization practice of applying nearly all the fertilizers 
within 10 days of transplanting, the AWD irrigation practices with the mid-season drainage 
and the subsequent wet and dry cycles in the later growth stages. Wang et al. (1997) suggested 
that the present AWn irrigation techniques and N-application practices in China present an 
enormous challenge for improving N use efficiency. 
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Figure 1. Designed field water depths in alternate wetting and drying (W) and continuously 

flooded (w
2

) in 1999 and 2000, Jinhua, Zhejiang Province and Tuanlin, Hubei Province, 
P. R. China. 
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The authors suggested that the techniques have also raised environmental concern. 
Systematic research on the efficiency of fertilizer use under different water management 
techniques has not been carried out in China. We hypothesized that applying N in more splits 
to better synchronize the N -application and water status in A WD irrigation could increase the 
efficiency of fertilizer use and water productivity. 

This study was conducted with the general objective of quantifying the impact of A WD 
irrigation practices on rice growth and resource-use efficiencies, so as to identify the optimal 
combination of water and N-fertilizer management. The specific objectives of the study were 
to quantify rice growth and yield as affected by water management and fertilizer treatments, to 
compare the amount of water diverted to rice fields and water productivity under AWD and 
under continuous flooding, and to quantify the recovery and agronomic efficiency of applied 
N, P and K as affected by fertilizers and the water regime. 

Materials and Methods 

Experimental Site 

The experiments were conducted in 1999 and 2000 at two sites: Jinhua, Zhejiang Province, and 
TL, Hubei Province, P. R. China. In Jinhua, the experiments were conducted during the early 
rice (ER) season (March-July) and the late rice (LR) season (June-October). In TL, the 
experiment was carried out during the mid-season rice crop from May to September. The 20­
cm topsoil layer in Jinhua was silt loam and in TL it was clay loam with other characteristics 
shown in table 1. 
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Table 1. Soil characteristics of the 20-cm layer, Jinhua and Tuanlin, 1999-2000. 

linhua, Zhejiang Province TL, Hubei Province 

Soil type Silt loam Clay loam 
pH (1:1 H20) 4.7 6.5 
Organic carbon (%) 2.03 1.03 
Available N (mg kg· l 

) 178 5.8 
CEC (cmol kg· l 

) 7.8 20.6 

Note: CEC=Cation Exchange Capacity. 

E.xperimental Design and Cultural Practices 

The experiments were conducted in a split-plot design with three replications. In TL, a fourth 

replication was added in 2000. The main plots had two water treatments: (WI) =AWD and 

(W2) == continuous flooding throughout the entire duration of crop growth. The designed water 

levels in the experiment are shown in figure I. The subplots consisted of4-N application timings: 

No N application. However, in TL 1999, due to an experimental error, the whole 

dose of N was applied as basal. Therefore, we indicate the 1999- "control" as F 0 *. 

FI == Farmers' practice of two applications. 50% of total N was applied one day 

before transplanting, and 50% 10 days after transplanting (OAT), 

F2 = Four applications. 30% of total N as basal, 30% at 10 OAT, 30% at PI and 10% 
at heading. . 

F
J 

== N-application timings were adjusted to reduce the amount of fertilizer applied 

at the beginning of the crop. In 1999, this treatment consisted of six applications 

in both sites: 25% of total N as basal, 25% at 10 OAT, 20% at PI, 10% just before 

heading, 10% after heading and 10% after complete flowering. In 2000, due to the 

objection of farmers (owners of the experimental fields) that the 6-split application 

was too laborious, FJ was modified to 4-split applications in the early and mid­

season rice crops (17% of total N as basal, 20% at 16 OAT, 27% at mid-tillering 
stage, and 36'10 at PI), and 5-split application in late-season rice crop (10% as basal, 

17% at 16 OAT, 27% at mid-tillering stage, 36% at PI, and 10% at heading). 

Nitrogen was applied as urea at the rate of 150 kg N ha" in linhua, and 180 kg N 

ha" in TL. Other fertilizers at both sites were 25 kg P ha·1 (single superphosphate), 

and 70 kg K ha'i (KC\) applied and incorporated into individual plots as basal 

dressing. 

All varieties used were hybrid rice. 
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;g P ha'\ (single superphosphate), 
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The subplot area varied from 90 to 200 m2
• All main plots were surrounded by 

consolidated bunds, equipped with plastic sheets installed to a depth of 0.25 m. Varieties used 
in Jinhua were V 402 (1999) and Xieyou 46 (2000), and in TL, 2you 50 I (1999) and 2you 725 
(2000). All varieties used were hybrid rice. 

Prior to land preparation, weeds were cut and removed from the field. All plots were 
hoed manually twice across the plots to a depth of 30 cm. The soil was submerged for one 
week before harrowing and final leveling. Fertilizers for basal dressing were then incorporated 
one day before transplanting. Seedlings were grown in a wet bed for approximately 32 days 
and 45 days in Jinhua and TL, respectively, and transplanting was done at two plants per hill 
with a spacing of 20 cm x 20 cm. 

Complete pest control was carried out in all plots to prevent any interference from weeds, 
diseases or insects that would hinder full quantitative assessment of water X nutrient 
interactions. 

Soil, Water and Climatic Data Measurements 

The water depth was measured daily in 40-cm deep x 20-cm diameter PVC pipes installed in 
each subplot. The bottom (22 cm) of the pipe was perforated with I-cm diameter holes at 2-cm 
intervals. The PVC pipes were installed to a depth of 25 cm below the soil surface. The soil 
inside the cylinder was dug out to a depth of 25 cm to facilitate measurement of the water 
table below the ground surface. 

Each main plot was irrigated separately. During each irrigation event, the flow rate was 
monitored at 3-minute intervals by a 20-cm cutthroat flume (Jinhua), V-notch weir (TL, 1999) or 
current meter (TL, 2000) installed at entry points ofeach main plot. The volume of water applied 
during an irrigation event was computed by integrating the flow rate with time. The depth of 
irrigation water applied was computed by dividing the volume of water applied by the area of 
the main plot. 

After a heavy rain, water depths in the plots may exceed the maximum allowable depths. 
During such conditions, water was drained to maintain the desired water depth. Drainage depth 
was computed from the field water depth before and after drainage. 

The evapotranspiration was computed from the pan-evaporation with values of the crop 
factor, Kc obtained from Mao Zhi 1992. The amount of seepage and percolation (S&P) was 
computed as the difference between inputs (irrigation and rainfall) and outputs 
(evapotranspiration and drainage). The S&P rate was estimated by dividing the S&P by the 
number of days with standing water. 

In TL, daily rainfall, maximum temperature, minimum temperature, radiation and pan­
evaporation were recorded daily from the meteorological station located at the experimental 
site, and other parameters were obtained from a weather station located about 10 km from the 
site. 
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Agronomic Parameters and N Uptake 

Phenological development was determined for each subplot at PI, heading, flowering (F) and 

physiological maturity. Samples for total aboveground biomass and total nutrient uptake were 

taken from the 12-hill area at IS DAT, 30 DAT, PI, F, and grain filling (GF). At physiological 

maturity, rice plants from the designated 12-hill area were cut to ground level for yield­

component analysis. At full harvestable maturity, plants from an area of 6 m2 were taken for 

yield measurements. SUbsamples of straw and grain were analyzed for N, P and K. Plants were 

sampled and processed using the procedure indicated in the Soil and Plant Sampling 

Measurements Manual (IRRI 1994). The derived parameters below were calculated using 

equations that follow them: 

Nitrogen harvest index (NHI) = CN (I) 

TN 

Physiological N use efficiency (PNUE, kg grain/kg N uptake) 

= GY x 0.86 (2) 

TN 

Agronomic N use efficiency (ANUE, kg grain/kg N applied) 

=(GY.E-GY~xO.86 (3) 

NF 
Apparent recovery of applied N (AR, %) = (TN f - TN~ x 100 (4) 

Np 

where, 

Factor 0.86 is used to convert grain yield (GY) with 14% Me to dry-weight basis, 

GY0 is grain yield (in kg ha· t 
, 14% MC) without N application (NO), 

GYp is grain yield (in kg ha- i , 14% MC) with fertilizer N application (NF), 

TN is total N uptake (in kg ha- '), 

TNo is total plant N uptake without N application (in kg ha- '), 

TNp is total plant N uptake with fertilizer N application (in kg ha- '), 
Np is fertilizer N applied (in kg ha- '), and 

GN is grain N uptake (in kg ha- '). 

We did not compute ANUE and AR for TL in 1999 because the experiment did not include 

O-N treatment. 

Results 

Climatic Parameters 

Rainfall, evaporation and sunshine hours from transplanting to harvest in the experimented 

seasons are shown in table 2. In linhua, seasonal rainfall ranged from 330 to 810 mm and was 

higher in early rice than in late rice. There was only a slight difference in evaporation between 

early and late rice seasons in 1999. However, evaporation in late rice in 2000 was 25% lower 
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than in early rice. While the highest sunshine duration occurred in early rice in 2000, 
corresponding to the highest evaporation, variations in sunshine hours did not correspond to 
the variations in evaporation in other seasons. This was because evaporation also depends 
on other factors such as wind speed and humidity. In TL, the 2000 crop received higher rainfall, 
evaporation and sunshine hours than the 1999 crop. 

Table 2. Climatic parameters from transplanting to harvesting for the early and late rice 
crops in Jinhua, Zhejiang Province and for the single rice crop in Tuanlin, Hubei Province, 
P. R. China, 1999 and 2000. 

(1) 

(2) 

Site 

Jinhua 
Jinhua 
Jinhua 
Jinhua 
TL 
TL 

Season Rainfall Evaporation Sunshine Duration* 
(nun) (nun) hours (days) 

1999 early rice 810 344 438 96 
1999 late rice 330 335 488 84 
2000 early rice 591 436 616 90 
2000 late rice 403 320 497 92 
1999 377 335 573 110 
2000 447 382 686 111 

(3) 

(4) 

I1C to dry-weight basis, 

,on (NO), 
plication (NF), 

se the experiment did not include 

g to harvest in the experimented 
ged from 330 to 810 mm and was 
difference in evaporation between 
t late rice in 2000 was 25% lower 

*From transplanting to harvest. 

Water Depths 

Figures 2 and 3 give the mean water levels for the A WD and the continuously flooded 
treatments for Jinhua and TL, respectively. The small standard errors of the means in Jinhua 
indicate that the experiment was able to impose the water treatments uniformly across the 
replications. It was not always possible however to maintain the same water depths in all 
replications in TL, reflected by high standard errors of the mean water levels (figure 3). This 
was because replications 3 and 4 were at a lower position in the toposequence than replications 
1 and 2. 

There was a clear difference in the water regime of the two water treatments. Flooding 
was maintained in the continuously flooded treatment, while there were periods without 
standing water in the A WD treatment. Because of rainfall we could not strictly follow the 
designed water depths in the AWD scheme (compare figures 2 and 3 with figure 1). For example, 
the drying during the mid-season drainage at the maximum tillering stage of the late rice crops 
in Jinhua was only a few days instead of the 10-15 days as in the design. Frequent drying 
periods could not be imposed in the early rice crop in Jinhua in 1999 and in TL in 2000. The 
data indicate the difficulty in precisely implementing the designed AWD irrigation in farmers' 
fields. Depending on the location of the field in the toposequence, farmers mayor may not 
succeed in realizing the drying periods as designed. 
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Grain Yield 

Average grain yield ranged from 3.2 to 5.8 t ha" in linhua (figures 4a-d), while higher grain 
yields of 4.4 to 9.2 t ha" were obtained in TL (figures Sa-b). Large variation in grain yield 
within each site was mainly due to yield responses to different treatments. The higher yield in 
TL was attributed to its longer crop duration compared with linhua. On average, grain yield in 
2000 was higher than in 1999 in both sites, in accordance with the higher solar radiation in 
2000 (table 2). 

With regard to grain yield, W x N interaction was not observed in linhua in all seasons. 
In TL, W x N interaction was observed only in the 1999 experiment (tables 3 and 4). In both 
sites, the fertilizer effect was consistently significant in all seasons. The effect was mainly 
attributed to the significantly lower yield of the control compared with other fertilized treatments 
(figures 4 and 5). Among fertilizer splits in linhua, F yielded higher than FI for most of thez 
time but the difference was significant only in the continuous flooding of the early rice in 2000 
(figure 4c). In TL (1999), F, gave the lowest yield in AWD but the highest in continuous 
flooding (figure Sa). In the rice crop of the same site in 2000, there were no observed significant 
differences among fertilizer split applications (figure 5b). 

Figure 4. Ejfect oJ water and timing oJJertilizer application on grain yield. Jinhua, Zhejiang, 
P. R. China. In the same water treatment, columns with the same letters (a, h, c) are not 
significantly different at 5 percent level. 
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Figure 5. Effect of water and timi/lg of fertilizer application on graifl yield. (a) Jinhua. 
Zhejiang and (b) Tuanlin, Hubei, P. R. China. In the sallie water treatment, columns with the 
same letters (a, b. c) are not significantly different at 5 percent level. 
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The difference in grain yield between WI and W 2 ranged from 1 to 22%, depending on 
fertilizer splits and seasons (figures 4 and 5). In most cases, continuous flooding was higher 
than AWD except for the early rice season in Jinhua in 2000 and the experiment in TL in 2000 
where grain yields were higher in the AWD irrigation treatments than in continuously flooded 
treatments. 

Total Dry Matter 

The total dry matter production ranged from 4.9 to 9.1 t ha·1 in linhua (figures 6a to d) and 8.5 
to 18.1 t ha· 1 (figures 7a and b) in TL. The large difference in total dry matter between Jinhua 

and TL and the variability within a site were due to the same reasons as for the difference in 
grain yield discussed earlier. 
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Figure 6. Effect of water and timing offertilizer application on total dry matter rice, Jinhua, 
Zhejiang, P. R. China. In the same water treatment, columns with the same letters (a, b, c) 
are not significantly different at 5 percent level. 
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total dry matter rice, Jinhua, 

vith the same letters (a, b, c) 

Figure 7. Effects of water and timing offertilizer application all total dry matter. (a) Jinhua, 
Zhejiang and (b) Tuanlin, Hubei, P. R. China. In the same water treatment, columns with the 
sallie letters (a, b, c) are not significantly different at 5 percellt level. 
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There was no observed W x N interaction in the total dry matter (table 3) in both sites. 
As in grain yield, the fertilizer effect was consistently significant when the control was compared 
with the mean of fertilizer split N treatments. There was no significant difference in the total 
dry matter production among F , F and F3 treatments in three out of four seasons in Jinhua

I	 J 

(1999 and early rice of 2000) and in both years in TL. In late rice in Jinhua in 2000, however, a 
significant increase in the total dry matter was observed (figure 6d) in both F2 and FJ compared 
to the farmers' practice of 2-split application. 
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Table 3. Variability of grain, straw, total dry matter and N uptake as affected by water and 
timing of fertilizer, linhua and TL, 1999-2000. 

Factor Grain yield Straw yield Biomass TotalN 

Early rice, Jinhua, 1999 
Water regime ns ns ns ns 
Fertilizer ** ** ** ** 
Among Fb F2, F3 ns ns ns ** 
Fo v among F 1, F2, F3 ** ** ** ** 
WxN ns ns ns ns 

Late rice, Jinhua, 1999 
Water regime ns ns ** ns 
Fertilizer ** ** ns * 
Among F" F2, F3 ns ns ns ** 
Fo v among F b F2, F3 ** ** ** ** 
WxN ns ns ns ns 

Early rice, Jinhua, 2000 
Water regime ns ns ns ns 
Fertilizer ** ** ns ** 
Among Fh F2, F3 * ns ns ** 
Fo v among F h F2, F3 ** ** ** ** 
WxN ns ns ns * 

Late rice, Jinhua, 2000 
Water regime ns ns * ns 
Fertilizer ns ** * ns 
Among Fh F2, F3 ** ** ns * 
Fo v among F h F2, F3 *. ** 
WxN ns ns ns ns 

Rice season, TL, 1999 
Water regime ns ns ns ns 
Fertilizer ns ns ns * 
Among Fh F2, F3 ns ns ns ns 
Fa v among Fb F2, F3 * ns ns * 
WxN * ns ns ns 

Rice season, TL,2000 
Water regime ns ns ns ns 
Fertilizer ** ** ** ** 
Among Flo F2, F3 ** ** ** ** 
Fo v among Flo F2, F3 ns ns ns ns 
WxN ns ns ns ns 

20 

Note: ns not significant; * = significant at 5% level; ** significant at I % level. 
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as: 

:ke as affected by water and 
Higher dry matter (about 2-7%) was observed in continuous flooding than in AWD (figure 

6) in Jinhua. In TL, the differences in the total dry matter between WI and W2 in 1999 was 1­
22% with consistently higher values in continuously flooded than in AWD treatments, while 
in 2000, the difference between WI and W

2 
was small (0.3-5%) and the trend was not consistent 

among fertilizer treatments (figure 7). In general, the differences due to water treatment in both 
sites were not statistically significant at 5% level except for the significantly higher total dry 
matter in Fl of the continuous flooding treatment in TL compared to AWD in 1999. 

Nitrogen Uptake 

Nitrogen uptake ranged from 43 to 115 kg N ha" in Enhua (figures 8a-d) and 62 to 
195 kg ha" in TL (figures 9a and b). The N uptake tends to increase with the frequency of split 
applications of N fertilizer. Among the seasons in Jinhua, the average N uptake was highest in 
1999, and the lowest was observed in the early rice season in 2000. The low N uptake in the 
early rice in 2000 was a combination of the lower N concentration in the grain and the low 
straw N concentration during the early rice seasons (data not shown). In TL, a higher uptake 
was observed in 2000 than in 1999 in agreement with the higher biomass in 2000. 

Figure 8. Effect of water and tilllillg of fertilizer application 011 total N-uptake. iinhua, 
Zhejiang, P. R. China. III the same water treatment, columns with tlte same letters (a, b, c) 

are not significantly different at 5 paercent level. 
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Figure 9. Effect of water and timing offertilizer application on total N uptake (a) Jinhua, 
Z/zejia/lg and (b) Tualllin, Hubei, P. R. China. III the same water treatment, columns with the 
same letters (a, b, c) are not significantly different at 5 percent level. 
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As in the agronomic parameters, there was no observed W x N interaction on N uptake 
in crops in 1999 and late rice in Jinhua in 2000 and in both years in TL (table 3). In Jinhua, 
there was however a significant water-nitrogen interaction with N uptake in early rice in 2000. 
The fertilizer effect was consistently significant in both years when the basal and control 
treatments were compared with the mean of fertilizer split N treatments. Among fertilizer splits, 
the N uptake in fanners' practice of two splits was consistently lower than the N uptake ofF

2
, 

and F J in Jinhua but the difference was only significant in the early rice crop. Higher uptakes 
in F2 and FJ in both sites were mainly due to a higher N concentration in both grain and straw 
(data not shown). 

At both sites, the difference in N uptake between WI and W
2 

ranged from 0.2 to 20% 
depending on the number of fertilizer splits. In most cases, N uptake in the continuously 
flooded treatment was higher than in the AWD treatment. However, all differences were not 
significant at 5% level. 

Nitrogen Use Efficiency 

There was no observed W x N interaction in all N-use efficiency parameters in all seasons in 
linhua and TL (table 4). As in the agronomic parameters, the fertilizer effect was consistently 
significant when the control was compared with the mean of fertilizer split N treatments. In TL, 
however, ANUE and AR were not computed in 1999 since the experiment did not include O-N 
treatment. The fertilizer effect was not observed in 1999, but it was significant in 2000. 

:ont\nuous flooding 
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Table 4. Variability of different N-use efficiency parameters as affected by water and timing 
of fertilizer application, linhua and TL, 1999-2000. 

a Il X <I> 

Factor NHI PNUE ANUE AR 

Water regime 
Fertilizer 
Among F/, F2, F3 
Fo v among F h Fl , F3 
WxN 

Water regime 
Fertilizer 
Among F" F2, F3 
Fo v among Fh F2, F3 
WxN 

Water regime 
Fertilizer 
Among Fh F2, F3 
Fo v among FJ, Fl , F3 
WxN 

Water regime 
Fertilizer 
Among FJ, F2, F3 
Fo v among Fh Fl , F3 
WxN 

Water regime 
Fertilizer 
Among Fb F2, F3 
Fo v among F I , F2, F3 
WxN 

Water regime 
Fertilizer 
Among Fh F2, F3 
Fo v among Flo F2, F3 
WxN 

* 
** 
ns 
** 
ns 

ns 
** 
ns 
** 
ns 

ns 
ns 
ns 
ns 
ns 

ns 
ns 
ns 

* 
ns 

ns 
ns 
ns 
ns 
ns 

ns 
ns 
ns 
ns 
ns 

Early rice, Jinhua, 1999 
ns ns ** 
** ** ns 
** 

** 

ns ns ns 

Late rice, Jinhua, 1999 
ns ns ns 
** ns * 
* 

** 
ns ns ns 

Early rice, Jinhua, 2000 
ns ns ns 
** ns ** 

* 
** 
ns ns ns 

Late rice, Jinhua, 2000 
ns ns* 
** ns* 
ns 
** 
ns ns ns 

Rice season, TL, 1999 

ns 

ns 

ns 

ns 

ns 


Rice season, TL, 2000 
ns ns ns 
** ns * 
* 

** 
ns ns ns 
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NHI in fertilizer treatments did not vary greatly in all seasons, ranging from 0.56 to 0.76 
(table 5 and 6). The relatively high NHI values were probably due to high grain yields and 
high grain N concentrations (data not shown). The highest NHI was observed in the control 
treatment. NHI values tended to decline with increasing number of fertilizer split applications, 
though the level of significance was not consistent among seasons. The relatively high NHI 
values were probably due to high grain N concentration (data not shown) . 

Table 5. Nitrogen efficiency parameters as affected by water and timing of fertilizer 
application, linhua, 1999-2000. 

a X a 
Treatment NHI PNUE 

Il 
ANUE AIl NHI PNUEll ANUIt AR+ 

A WD irrigation Early rice, 1999 Late rice, 1999 
ns 

Fo 0.76 a 61 a 0.68 a 66a 

ns 
*. 

FI 
F2 
F3 

0.69 ab 
0.66b 
0.65 b 

61 a 
49b 
47b 

7a 
7a 
7a 

12 b 
25 a 
28a 

0.62 b 
0.66ab 
0.65 ab 

50b 
47b 
44b 

7a 
6a 
7a 

26 a 
28 a 
36 a 

Continuous flooding 
Fo 0.72 a 66a 0.73 a 68 a 

ns F\ 0.61 b 52 b 6a 21 b 0.66b 52 b 6a 24b 
F2 0.64ab 45 b 6a 33 a 0.67b 47 be 7a 33 ab 

ns F3 0.64b 44b 8a 35 a 0.64 b 42 c 7a 40a 

ns AWD irrigation Early rice, 2000 Late rice, 2000 

Fo 0.65 a 68 a 0.69 a 63 a 
FI 0.63 a 63 ab 13a 22 b 0.60 a 45 b 4a 22 a 

ns F2 0.63 a 55b 14 a 33 a 0.62 a 43 b 6a 27 a 
F3 0.61 a 58 ab 12 a 25 b 0.65 a 43 b 6a 28 a 

Continuous flooding 
Fo 0.68 a 72a 0.70 a 69 a 
FI 0.65 ab 63 ab 13a 23 b 0.62 a 40b 2b 28 a 
F2 0.67 ab 54 be 15 a 36a 0.66 a 39b 5a 40 a 
F3 O.58b 50c 13 a 37 a 0.62 a 41 b 6a 37 a 

ns 
• 

us 

, level; (IN itrogcn 
I N usc efficiency 

e};xAgronomic N 

yield,""",) * 0.86} 
Iplake ,,,,,',," total 

In a column for each season and water regime, means followed by a cammon letter are not significantly 
different at 5% level by DMRT; aNitrogcn Harvest Index (NH!) (grain N uptake / total plant N uptake); 
flPhysiological N use efficicncy (PNUE. kg grain/kg N uptake) {(grain yield * 0.86) / total plant N 

uptake}; xAgronomic N usc efficiency (ANUE. kg grain/kg N applied) = {(grain yield,,,,,,,,,,, grain yield"",,,",) 
* 0.86} / fertilizer N applied; <l>Apparent recovery of applied N (AR, %) {(total N uptake f""",," total 

N uptakc,on".,,) / fcrtilizer N applied} * 100. 
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Table 6. Nitrogen efficiency parameters as affected by water and timing of fertilizer 
application, Tuanlin, 1999-2000. 

Drainage, Seepag 

!he amount of drainal 

Treatment NHI(1 PNUEIJ ANUEl AR' 

AWD irrigation Rice season, 1999 

Fo 0.71 a 61 a 
F, 0.69 a 61 a 
F2 0.70 a 49b 
F3 0.64 a 47b 

Continuous flooding 
Fo 0.69 a 66a 
F, 0.72 a 52 b 
F2 0.63 a 45 b 
F3 0.67 a 44 b 

A WD irrigation Rice season, 2000 

Fo 0.67 a 62a 
F, 0.60 a 50b 21 a 52a 
F2 0.60 a 45 b 19 a 56a 
F3 0.58 a 43 b 20 a 64 a 

Continuous flooding 
Fo 0.63 a 59 a 
F, 0.57 a 50b 18 a 45 b 
F2 0.56 a 43 bc 18 a 55 ab 
F3 0.67 a 39 c 20a 72a 

III 2000 and in the earl­
because water was de; 
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PrOVince, p. -R. China. 
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different at 5% level by DMRT: aNitrogen Harvest Index (NHl) (grain N uptake I total plant N uptakc); 
bPhysiological N usc efficiency (PNUE, kg grain! kg N uptake) {(grain yield * 0.86) I total plant N 
uptake); eAgronomie N usc efficiency (ANUE, kg grain/kg N applied) = (grain yield"",,,,,. - grain yield,,,n,,.') 
* 0.8 6) I fertilizer N applied; fApparent recovery of applied N (AR. %) {(total N uptakc'''';>'''d total 
N uptake,"n",') / fertilizer N applied) • 100. 

PNUE values ranged from 39 to 72 kg grain/kg N uptake with decreasing values as the 
number of splits increased (tables 5 and 6). PNUE values tend to decrease with increasing N 
splits. This was reflected in the higher N concentrations in both the grain and straw (data not 
shown) in F2 and F 3 compared with F 0 and Fl' 

ANUE values ranged from 2 to 15 kg grain/kg N applied (table 5) in Jinhua and from 18 
to 21 kg grainlkg N applied in TL (data available only for year 2000) (table 6). ANUE values in 
F2, F3 and F1 were comparable. 

Values ofAR ranged from 12 to 40% in Jinhua (table 5) and 45 to 72% in TL (only in year 
2000) (table 6). The increase in AR in F2 and F3 conforms to the increase in N uptake with the 
increasing number of splits. ANUE and AR values in TL were higher than in Jinhua. This was 
because the difference between the zero N and other N treatments was higher in TL (about 
4 t ha·l) than in Jinhua (about 3 t ha· ).'
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and timing of fertilizer 

52 a a 
56 aa 
64ala 

~a 45 b 

~a 55 ab 

~a 72a 

:ommon letter arc not significantly 
III N uptake I total plant N uptake); 
:grain yield" 0.86) I total plant N 

{(grain yield. . - gram Yleld,,,.«,,)
t.:rtlh7>!U 1 

%) = {(total N uptakcr",,,,,,d tota 

Drainage, Seepage and Percolation 

The amount of drainage water was higher in WI than W , significant at 5% level in both sites
2 

in 2000 and in the early rice of 1999 (figure 10). The higher drainage water observed in WI was 

because water was deliberately drained to realize the periodic drying, especially in the long 

drying period (mid-season drainage) at the tillering stage. 

Figure 10. Water balance components in alternate wetting and drying (WI) and continuous 
flooding (w) in 1999 and 2000 in (a) Jinhua, Zhejiang Province and (b) Tuanlin, Hubei 
Province, P. R. China. 
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In TL, the daily seepage and percolation rates in replication I of treatment WI was 
exceedingly higher (>20 mm day'!) than in other replications «6 mm day·I). This was because 
there was a drainage pipe network previously installed in replication I of treatment WI' This 
replication was removed for our subsequent analysis of water balance and water productivity. 
The mean seepage and percolation rate for other replications was 4-6 mm day'! in 1999 and 
3 mm day' I in 2000. The lower seepage and percolation rates in 2000 could be attributed to the 
construction of cement linings along the main plots in 2000. 

The mean seepage and percolation rate in Jinhua was 3.8 mm day!, varying from I to 6 
mm day·l. At both sites, there was no significant difference in seepage and percolation rates 
between the two water treatments. Over the crop season, the total amount of seepage and 
percolation was consistently higher in W than in WI at both sites, but the differences were z 
significant only in 2000 (figure 10). Since there were no significant differences in S&P rates 
between W, and W 2' the higher amount of total seepage and percolation in W 2 can be attributed 
to the greater number of days with standing water in W 2' 

Water Input 

In Jinhua, the total water input (rainfall + irrigation) ranged from 554 to 934 mm per crop. The 
total water input in early rice crops was invariably higher than in the late rice crops (figure 10). 
This was due to the higher rainfall in the early rice crop. Irrigation water in the late season 
crop of 1999 (about 230 mm) was much higher than the early season crop of 1999 (about 120 
mm). This conforms to the higher rainfall in the early rice season in 2000. Despite the high 
rainfall in the early rice crop of 2000, the amount of irrigation water was comparable to that in 
the late rice crop. This was due to the high evaporative demand in the season (table 2). In TL, 
the total water input ranged from 732 to 1,144 mm. The total water input in 1999 (930 mm) was 
higher than in 2000 (820 mm) (figure 10). This was due to the lower rainfall in 1999 (table 2). 

In most cases, irrigation under continuous flooding treatment was higher than under 
A WD but the differences were statistically significant only in the year 2000, when larger 
irrigation amounts were required. The largest difference in irrigation water between the two 
water treatments occurred in Jinhua in the late rice season of 2000. 

Water Productivity 

Water productivity in terms of total water input (irrigation + rainfall, WP'R) ranged from 0.55 to 
0.94 kg mJ in Jinhua, and from 0.87 to 0.98 kg mJ in TL (figure 11). In both sites, WP'R was 
generally higher in WI than in W

2 
but the difference was statistically significant in Jinhua, 

only in the late rice season of 2000 (figure 11). 
Water productivity in tenns of irrigation (WP,) ranged from 2.1 to 4.2 kg m3 in Jinhua, 

and from 1.50 to 2.42 kg m3 in TL. WPI in Jinhua was higher in the early rice crop than in the 
late rice crop because of lower irrigation water input in the early rice. As in TL, WPIwas higher 
in 2000 than in 1999, due to the lower irrigation water input in 2000. WPI was higher under 
AWD than under continuous flooding in three out of four seasons in Jinhua (except for the 
early rice crop of 1999), and in both years in TL. In these cases, the increase in WPI was 
mainly due to the lower irrigation water input in WI (figure 10). For the early rice crop of 1999, 
WPI under continuous flooding was slightly higher than that under AWD because the amount 
of irrigation was similar in both treatments while the yield under continuous treatment was 
slightly higher than under A WD. 
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Figure II. Water productivities with respect to irrigation (WPl) and to the total water input 
(WP (I+R)) in alternate wetting and drying (W) and continuous flooding (w2) in 1999 and 
2000 in (a) Jinhua, Zhejiang Province, and (b) Tuanlin, Hubel Province, P. R. China. 
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Conclusions 

Increasing the number of splits increased the total N uptake, but not the grain yield and biomass 
compared to farmers' practices of two splits. In most cases, continuous flooding gave 1-25% 
higher yields than AWD, though there are cases where AWD gave higher yields. However, 
the yield differences were not statistically significant at 5% level. Our study showed that 
periodic drying of the soil was not a prerequisite for high yield. There was no significant water­
nutrient interaction on grain yield, biomass and N uptake. Thus, A WD does not require N­
fertilizer management differently from continuous flooding 

In our study, A WD reduced irrigation only by a small amount if measured in absolute 
terms (maximum 90 mm in Jinhua, maximum 80 mm in TL) compared to continuous flooding. 
But this saving accounted up to 30% of the irrigation water. This is because the study sites 
had relatively high rainfall, low percolation and seepage and, therefore, a low total of irrigation 
water. Nevertheless, AWD could raise the water productivity with respect to irrigation water 
by about 5-35% compared to continuous flooding in Jinhua, and by 16-28% in TL. The amount 
of water saved and the increase in water productivity will probably become more important in 
more-pronounced dry conditions or in more-permeable soils. Farmers can also reduce the 
amount of irrigation further by not having to drain the field to achieve periodic drying. A WD 
can thus be an important technology for farmers to cope with water scarcity and may help 
increase water productivity at the regional scale if on-farm water saved can be used more 
productively downstream. 
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