The daily water demand can be computed by the water balance equation:

\[\text{D}_{\text{t}} = \text{D}_{\text{t}} + \text{I}_{\text{t}} - \text{ET}_{\text{t}} + \text{SP}_{\text{t}} + \text{Re}_{\text{t}} \]

where \(\text{I} \) is the irrigation supply and subscript \(t \) is the time in days.

Allocation of irrigation water to each block depends on the value of \(\text{D}_{\text{t}} \), with reference to MWD, LCD and UCD.

Operationalization of the Water Management Model

The volume of water supplied to each irrigation block, rainfall and pan-evaporation data for the previous day are conveyed by the field staff to the district offices by the VHF set or telephone every morning. The data are then checked and transmitted to the Control Center at the MADA headquarters via the district computer terminals for processing. The status of irrigation and supply for the day for each irrigation block is made available to the field staff via the district offices on the same day for new gate settings to be carried out.

Data on progress of planting activity of each block are taken once a week and input into the model to determine the value of ET.

The actual field water depth of each block is also taken once a week and input into the model to correct the computed water depth. This is necessary because the computed water depth gives the theoretical water requirement of each block. The hydraulic conditions of the delivery canals are not taken into account.

The operation of the model is subjected to manual override. Decision making by the management is assisted by access to real time information provided by the telemetry system consisting of 65 automatic rainfall stations and 4 rainfall-cum-water level stations.

[Teoh Weng Chew/Tew Boon Tiek, Irrigation Engineers, Muda Agricultural Development Authority, Teu Pejabat Mode, Ampang Jaya, Pek Sri Sent 136, 05710 Petal Sebah, Kedah, Malaysia. Fax: 604 7312667]
Pakistan, where cropping intensities are estimated to be around 125 percent, as opposed to the originally envisaged 50-75 percent of design values. The demand for canal water is tremendous, particularly in the hot kharif (summer) season, as farmers favor canal water because of its low price and good quality. The irrigation agency has to increasingly deal with localized demands from farmers to satisfy actual crop water requirements, infringing on the (still valid) system objective of distributing water equitably. The effect of this on actual water distribution patterns in the Punjab has been described by various authors (see, for instance, Bhutta and Vander Velde 1992).

It is argued here that in a situation where the demand for canal water is as high as it is and where an equitable water distribution is evermore difficult to achieve, there is a need to have accurate, easily accessible information available to managers on actual water deliveries. This information can be used to evaluate past water deliveries (vis-a-vis targets), to support decisions for future operations and to detect possible physical or other constraints to water distribution. In recent years, a number of computer-based management information systems have been developed in the field of irrigation. These tools aim to help irrigation managers process and analyze large numbers of data, that are often otherwise not used, and to convert them into meaningful indicators. However, few of these information systems have been adopted by irrigation agencies and are now routinely used by managers.

In 1993, the International Irrigation Management Institute (IIMI) in Pakistan and the Punjab Irrigation and Power Department (PID) have launched a pilot study in the Fordwah Branch Canal (Punjab), to test the feasibility of the real-time implementation of an Irrigation Management Information System (IMIS). Managers and researchers have jointly improved the existing data collection system in an administrative irrigation unit of 67,000 ha. Moreover, the inflow into this unit has stabilized in 1994, providing local managers with a more predictable water supply.

Both partners are evaluating the utility of this tool through a Planning Group, which coordinates irrigation management research in the Punjab Irrigation and Power Department. Based on the results of the pilot study, recommendations will be made to the Department regarding application of this tool to larger areas in the Punjab.

In 1990, the Government of Mexico, began an irrigation district transfer project through the National Water Commission (CNA). At present, almost all economically sound irrigation districts have been transferred to user associations. To consolidate the transfer project, the CNA, in collaboration with Mexican and international research institutes and universities, is developing research and technological projects.

In 1993, the International Irrigation Management Institute (IIMI) in Pakistan and the Punjab Irrigation and Power Department (PID) have launched a pilot study in the Fordwah Branch Canal (Punjab), to test the feasibility of the real-time implementation of an Irrigation Management Information System (IMIS). Managers and researchers have jointly improved the existing data collection system in an administrative irrigation unit of 67,000 ha. Moreover, the inflow into this unit has stabilized in 1994, providing local managers with a more predictable water supply.

Both partners are evaluating the utility of this tool through a Planning Group, which coordinates irrigation management research in the Punjab Irrigation and Power Department. Based on the results of the pilot study, recommendations will be made to the Department regarding application of this tool to larger areas in the Punjab.

In this article, we discuss the manual methodology used for operation and water distribution at two main irrigation canals in Mexico: the Right Bank Main Canal (RBMC) of Irrigation District No. 085 (La Begofia) and the "Canal Alto" of Irrigation District No. 041 (Rio Yaqui). Both canals are currently being studied using hydraulic simulation techniques.

The Begofia District is in central Mexico at 1,754 msl. The Right Bank Main Canal is a concrete-lined canal, 20 km long with 28 reaches, which supplies water to 7,800 ha. The reaches vary in length from 300 m to 1.6 km. The canal has 70 turnouts to secondary canals and farm outlets, with a