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Abstract
The Saint-Venant equations of open-channel flow were linearized using the Taylor series expansion
~around an equilibrium condition. A set of linear dynamic equations were obtained for a canal with
multiple pools. The principles of optimal control and estimation theory were then applied to derive
a decentralized controller and an observer for constant-volume control of irrigation canal pools in the
presence of external disturbances acting on the system. Using the linearized Saint-Venant equations
and an example problem with S pools, the performance of the control algorithm in maintaining a
constant-volume in the canal pools was found to be excellent.

Introduction

The need for real-time monitoring and control of irrigation canal operations is becoming
~ increasingly obvious due to the less than desirable performance of manually controlled large-scale
irrigation systems. In addition, the existing rigid schedules do not allow the farmers to tap the full
potential of modern irrigation technology at the farm level. Delivery schedules that are more flexible
would allow the farmers the needed flexibility to achieve higher efficiencies at the farm level. The
flexible delivery schedules, however, make the manual operation of irrigation canals very difficult.
To overcome this difficulty, attempts have been made, in the past, to develop local (Buyalski and
Serfozo 1979; Zimbelman 1981; Burt 1982; Chevereau et al 1987) and centralized (Rogier et al 1987)
control algorithms for demand delivery operation of irrigation canals. However, the derivation of the
_control algorithms was based upon a tedious trial and error procedure using extensive simulations of
the unsteady open-channel flow model.

Optimal control theory provides a well defined methodology to derive gate control algorithms
(Corriga et al 1982; Balogun 1985; Reddy 1990), and eliminates the trial and error procedure that has
tbeen used in the past. Balogun (1985) used optimal control theory for deriving a gate control
Algorithm for a centralizea control system. This procedure, however, handled only initial disturbances
Without accounting for continuously acting external disturbances (changes in lateral withdrawal rates).
{REddy (1990) developed a local control algorithm for controlling individual gates in the presence of
Doth initial and external disturbances acting on the system. However, in the derivation of the control
Agorithm, the interactions between the pools were neglected. Therefore, there is a need for developing
asimple control algorithm for operating a series of gates on an irrigation canal. The objective of this
P?[?er is to present a decentralized observer-controller algorithm for demand delivery operation of
§ Mgation canals in the presence of external disturbances.
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Mathematical Model

In the operation of irrigation canals, decisions regarding gate openings in response to changes
in water withdrawal rates into lateral or branch canals is required to maintain the depth of flow or the
volume of water in a given pool at the target value. This problem is similar to the process control
problem in which the state of the system is maintained close to the desired value by using real-time

feedback control. To apply the linear control theory, the Saint-Venant equations of open-channel flow,
which are presented below, were linearized:

ﬂ:—l @+ 1
gt - T ek W (H
QZ
ol =—
(2
%=‘—<£]+9A(%_So+sf) !

in which y = depth of flow, m; Q = flow rate, m*/s; T = flow top width, m; A = cross-sectional
area of flow, m?, S, = canal bed slope; S; = friction slope = Q|Q|/K? g = acceleration of gravity,
m/s?; w = lateral outflow (positive) or inflow (negative), m*/s/m; K = hydraulic conveyance of the
channel = AR?*/n; n = Manning friction coefficient; = hydraulic radius, m; t = time, sec; and
x = distance, m.

In Egs. 1 and 2, the spatial derivatives were replaced by finite-difference approximations, by
dividing the pool into few segments (N number of nodes). The forward-, the central-, and the
backward-difference schemes were applied to the first, the intermediate, and the last nodes,
respectively, of each pool. The turnouts can be located any where in the pool, but the location must
be specified for modeling purposes. To solve Eqs. 1 and 2, appropriate boundary conditions at the
gates need to be specified. These boundary conditions were expressed in terms of the continuity and
the gate discharge equations given by:

Continuity Equation:

Qia,n = Qi1 = Qg (3)

Gate Discharge Equations:

Qqi = Cq; by uy V29 ¥i,8 ~ Vi) (4)

in which C; = gate discharge coefficient; b; = width of gate i, m; u; = opening of gate i, m; y,,=
depth of flow at the first node of pool i, m; y;,, x = depth of flow at node N of pool i-1, m; Q,, =
flow rate at the upstream end of pool i, m’/s; Q,, = flow rate at the downstream end of pool i-1,
m’/s; Q, = flow rate through upstream gate of pool i, m*/s/m; i = pool index; and j = node index
(1 to N). In Eq. 4, the change in bottom elevation of the canal across the gate was assumed negligible.

Lateral Withdrawals

The lateral canals were assumed to be located immediately upstream of the last node in each
pool (Figure 1). Though the lateral withdrawal was concentrated at one point, for modeling purposes,

it was assumed to be uniformly distributed between the adjacent nodes, and was related to w of Eq.
1 as follows:

wheres = Ax inthe case of abackward difference scheme, and s = 2Ax in a central difference

scheme; and q;x = lateral withdrawal rate at node N of pool i, m*/s. Similar relationships can be
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derived for situations where the laterals are located throughout the length of pool.
Linearization of System Equations

The linearized model was derived based upon an initial steady state condition. Using the
Taylor series expansion around the initial point and truncating terms higher than the first-order, a set
of linear equations was obtained (Balogun 1985; Dia 1990). The discrete-time version of these
equations for a canal reach with M pools is-

Ox(k+1) = ® dx(k) + T du(k) + ¥ dqg(k) (6)
8y (k) = H dx(k) (7)

in which 8x (k) = ¢ x I state vector; du(k) = m x I control vector; ¢ = € x ¢ system
feedback matrix; I" = ¢ x m control distribution matrix; ¥ = ¢ x p disturbance distribution
matrix; 8q(k) = p x | matrix representing external disturbances (changes in water withdrawal

;rates) acting on the system; 8§y (k) = r x | vector of outputs (measured variables); H = rx

* ¢ output matrix; £ = number of dependent variables in the system; m = number of controls (gates);
‘p = number of lateral canals on the supply canal in the given reach; k = sampling instant; and r =

Enumber of measured outputs. In Eqgs. 6 and 7, the variables &x,du, and &g are defined as
&

%follows:

“dx = (8y; 1,0y, 5000 Hu et OV w1000 w0V n) ' (8)
S bu = (Ou,,0uy, ... Ouy,)’ (9)
8q = (8qgy 1o 0G o 0qgy )’ (10)

which 86Q;; = variation in flow rate at node j of pool i, m*/s; dy;; = variation in depth of flow at
shode j of pool i, m; du; = variation in upstream gate opening of pool i, m; du,,, = variation in
ownstream gate opening of pool i, m; and 8q;; = variation in water withdrawal rate at node j of pool
m®/s/m. The elements of the matrices ®, [ and P

Jepend upon the initial condition.

esign of Controller

Equations 6 and 7 can be used to simulate the system dynamics as a function of time, given

€ initial conditions (8x(0)), the external disturbances acting on the system (8¢), and the gate
pening (du ). However, in canal operations the gate opening is the unknown. To achieve a desired
Stem dynamics, given the initial condition and the disturbances (known or unknown), the selection
& an appropriate gate opening becomes a trial and error procedure. The concepts of control theory
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can be applied to eliminate this trial and error procedure, and derive a direct solution for gate opening.
To apply control theory, the matrices @, I', and H must satisfy the stability, controllability, and
observability properties (Kailath 1980). The function of a control algorithm is to bring an initially
disturbed system to the desired target value in the presence of external disturbances acting on the
system. For this problem, a proportional plus integral (PI) control (Figure 1) of the following form
was derived using optimal control theory:

Su(k) = -K 8x(k) (an

where K = controlier gain matrix. A large value of K requires a high energy input, and might cause
overtopping of canal banks. Conversely, if the control is not of sufficient magnitude, the system would
return to the target value very slowly, causing large deviaticns in depths of flow or volume of water
stored in the pools. Therefore, there is & tade-off between the rate of return to the equilibrium
condition and the overtopping of canal banks. The elements of the controller gain matrix K are
obtained by solving the algebraic matrix Riccati equation, which is a celebrated equation in control
theory, and a variety of techniques are available to solve this equation (Kailath 1980). In Eq. 11, once
the elements of K matrix are available, either measured or estimated values of §x(k) are used to
calculate the desired variation in the opening of gates. (Figure 1).

In a centralized control scheme, the control algorithm of each gate (Eq. 11) needs real-time
information (flow depths and flow rates at the nodal points) from all the pools in the system. This
increases the computational complexity and the amount of data transmission to the central control
station. Conversely, in a decentralized control scheme, the control algorithm of each gate requires
real-time information from only a few adjacent pools. The decentralized control algorithm presented
in this paper (Figure 2) needs information only from the three adjacent pools (one upstream and two
downstream pools). This minimizes the amount of data transfer between the pools and the control
station(s).

Design of Observer

In the implementation of the control law defined by Eq. 11, measured values for all the
variables- depth and flow rate at all the intermediate nodes of each pool, depth at the first and the last
nodes of each pool- must be available for feedback from only the adjacent pools in the case of a
decentralized control scheme (Figure 3). This is undesirable from an economic point of view. Since
it is very expensive to measure all the state variables, particularly the flow rates, values for some of
the state variables must be reconstructed from the available data collected from an irrigation canal.
An ‘estimator’ or ‘observer’ can be used to minimize the number of measured state variables. An
observer is a mathematical model of the given system which predicts values for the state variables that
are not measured, based upon measured values of a few state variables (upstream and downstream
depths of flow in each pool). Reddy et al (1992) presented a technique for designing an observer for
local control systems. The same technique can be extended for the decentralized control scheme
presented in this paper. The observer (or estimator) equation is given as follows:

Sx(k+1) = ® d&(k) + T du(k) + L(dy(k) - H 8£(k)) (12)

in which L. = observer gain matrix. In Eq. 12, the estimated values for the state variables are driven
by the difference between the measured and estimated values for the selected state variables. Here,
it is assumed that only the upstream and downstream depths of flow in each pool are measured. The
dimension of the L matrix is equal to the number of state variables estimated including the integral
control variables, and the number of measured state variables. Since the observer resides in the
computer, in order to keep the on-line computation to a minimum, and to minimize the cost of data
communication, a decentralized observer is preferred compared to a global observer. The decentralized
observer has a block-diagonal structure. A schematic of a feedback control system with an observer
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in the loop is presented in Figure 2.

The elements of the observer gain matrix are selected such that the estimated values of the
state variables approach the actual values as quickly as possible. This can be done either by using a
pole (eigenvalue) placement technique or by designing a Kalman Filter. In this paper, the pole
placement technique is used to design the observer. In the presence of random disturbances, assuming
that a model is available to simulate the disturbances, the Kalman Filter is an appropriate choice. The
~ application of Kalman Filter (adaptive type) will be discussed in a subsequent paper.
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' Results and Discussion

To demonstrate the applicability of the technique discussed above, an examplie problem was

& considered. The data presented in Table | were used to derive the elements of @, I and ¥ matrices,
£ and the initial steady state gate openings (Table 1) for all the 6 gates. The opening of the 6th gate was
g then fixed at its initial steady state value. The discrete-time matrices were used in deriving the
: elements of the controller gain matrices for a decentralized control scheme. The performance of the
control algorithms were evaluated by introducing known disturbances into the pools (Table 1). In the
evaluatlon an approximate estimation of the variation in the volume of water stored in the pools was
. obtained by the following expression:

A
3oV = T‘“ [0.508y, + 8y, + 8y, + 8y, + 0.508y,|

%in which A, = steady state top water surface area (m?), 8V = variation in the volume of water
2 stored in any given pool (m’); and 8y, = variation in the depth of flow at node i (i = 1 to 5), in a

’,(,glven pool. The values of A,, and the initial volumes of water stored in the pools are presented in
§Table 2.

%Table 1. Data used in the simulation study

¥
4 Parameter Pool/gate 1 Pool/Gate 2  Pool/Gate 3 Pool/Gate 4  Pool/Gate 5

Pool:

length(m) 7000 7000 7000 7000 7000
- width (m) 12.25 12.25 12.25 12.25 12.25
¥ bottom slope 0.0001 0.0001 0.0001 0.0001 0.0001
side slope 1.50 1.50 1.50 1.50 1.50

¥ initial lateral flow
rate (m3/s) 9.00 6.00 5.00 6.00 5.00
Initial downstream
depth (m) 4.00 3.40 2.60 2.05 1.66
W& downstream flow
& requirements (m3/s) 36.00 30.00 25.00 19.00 14.00

& width(m) 18.25 18.25 18.25 18.25 18.25

i discharge coeff. 0.83 0.83 0.83 0.83 0.83
" initial opening(m) 0.32 0.58 0.45 0.48 0.44
i ,isturbances(m3/s) 5.00 6.00 4.00 3.00 3.00
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Upstream reservoir elevation (m) 110.10
Downstream reservoir elevation (m)  99.90
Upstream invert elevation (m) 102.10

Downstream invert elevation (m) 98.60

Table 2. Initial Tap Water Surface Area and Volume of Water Stored in Pools

Pool # Average Pool Surtfacz Tnitial
Top Width Length Area Volume
(m) (m) (m®) (m®)

1 23.85 7,000 106,950 488,110

2 22.07 7,000 154,497 392,700

3 19.79 7,000 138,548 281,120

4 18.29 7,000 128,044 214,620

5 17.20 7,000 120,365 169,610

Disturbances in the form of increased flow rates into all the 5 laterals in the system were
introduced (Table 1), and the results of the simulation study are presented in Figure 3. The maximum
volume variation of 5400 m* occurred in pool 2, followed by a variation of 4800 m* in pool 3 (Figure
3a). These resulted in 1.38 % and 1.71% of the initial volumes of water stored in pools 2 and 3,
respectively, which are not significant variations. After an hour of introduction of the disturbances,
the variations in the volume of water stored in the pools bounced back to the initial volumes, and
gradually became positive. However, the positive variations in the volume of water stored were
smaller than the initial negative variations. These variations in the volume of water stored in the pools
were considered to be acceptable.

The variations in gate opening in response to the simultaneous disturbances were also
simulated. The maximum steady state variation in the opening was 0.31 m for gate 2 followed by a
variation of 0.20 m for gate 4. The variation in the opening of all the other gates was in the range of
0.15 m to 0.20 m (Figure 3b). These variations in gate opening were considered reasonable.

In the above simulations, it was assumed that all the disturbances were positive (increased flow
rate into laterals) and started at the same time. Under field conditions, all the disturbances may not
be positive and start at the same time. The performance of the system in terms of maintaining a
constant volume in the pools would increase when the disturbances acting on the system are temporally
distributed, i.e. do not start at the same time. In addition, the performance of the system would be
even better in the presence of spatially distributed negative disturbances (either a decreased flow rate

into a lateral or a distributed source of inflow into the canal, for example groundwater pumped into
the canal) acting on the system.

Figure 4 presents the results obtained using a decentralized estimator in the feedback loop. It
is obvious from the Figure that the gate openings calculated using the estimated values approach the
calculated gate openings using the measured values of the state variables within 1 hour of the
simulation period. This is an acceptable performance of the combined observer-controller algorithm.
However, before implementing the algorithm in the field, the performance of the control algorithm

must be evaluated using the nonlinear, unsteady open-channel flow model. This will be done in the
near future.

An ideal control algorithm is one that would yield a zero percent deviation in the volume of
water stored in the pools in the presence of external disturbances acting on the system. But this would
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result in larger rates of water transfers between the pools, and larger deviations in the depths of flow.
In order to minimize the deviations in the depths of flow, some variation in the volume of water stored
in the pools must be accepted. The control algorithm presented here strikes a balance between the
deviations in the depth of flow and the deviations in the volume of water stored in the pools. In all
the simulations, the depth at the middle node of the pools remained more or less constant, and the
water surface elevation always pivoted about that point, which is similar to the BIVAL control
mechanism (Chevereau et al 1987). The maximum variation in the depths of flow was at the first and
the fifth node in each pool. In this particular example problem, the laterals were located at the
downstream end of the pools. Because of the deviations in the depth of flow, the turnouts at the
upstream and downstream ends of the pools, if any, must be fitted with discharge regulators to deliver
the recuired flow rate into the laterals under variable head in the supply canal.

Summary and Conclusion

Using spatial discretization and the Taylor series expansion, a linear lumped parameter model
of open-channel flow was obtained. The canal control problem was formulated as an optimal control
problem, and the set of linear equations obtained were used to derive a decentralized control and
estimation scheme for operation of a series of irrigation canal gates. For the decentralized control
algorithm presented in this paper, the control algorithm of each gate needs information only from three
adjacent pools at most. A proportional plus integral control was derived to handle both the initial and
the external disturbances acting on the system. A local, decentralized observer was designed to
reconstruct most of the state variables of the system, given the measured values of only the upstream

and downstream depths in each pool.

To test the performance of the control algorithms, a canal reach with 5 pools was considered.
The performance of the control algorithm was evaluated by simulating the dynamics of the system in
the presence of several external disturbances in all the 5 pools. The maximum variation in the volume
of water stored in the pools was less than 1.6 % when the total magnitude of the disturbances acting
on the canal system was 21 m*/s. This represented an increase in flow rate of close to 50% of the
initial flow rate into the canal. The performance of the decentralized control scheme in terms of
maintaining a constant-volume of water in the canal pools was found to be acceptable. Though only
5 pools were used in this paper for evaluating the performance of the technique, the same

methodology can be used to derive control algorithms for irrigation canals that have large (more than
5) number of pools (or gates).
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Figure 1. Schematic of a State Feedback Control System
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Figure 2. A Decentralized Control Scheme
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