Irrigation systems developed by villagers are far less conspicuous than the dams and concrete canals of large government constructed projects. Indigenous irrigation systems grow from villagers' attempts to control water, rather than being constructed according to an outside blueprint. The resulting systems of earth weirs, pipes and field-to-field flow may be almost invisible to anyone not specifically looking for them. The common view has been that there is no indigenous irrigation in northeast Thailand. The truth seems to be that on almost any stream one can find irrigation systems developed by farmers.

As in most rice growing areas, the northeastern landscape is the result of many years of work by farmers creating paddy fields, with the primary purpose of controlling water in order to grow rice. Farmers in the flat or rolling terrain of the northeast are already extensively involved in

H 13931
controlling water even if their paddies are "rainfed".

The elements of water mangement include levelled fields, paddy dikes and larger embankments, pipes, rosdside ditches used to carry water, and paths which sometimes serve as strcam channels. Villsgers build weirs of earth and wood to divert wister for growing rice and store water for livestock, fishing, gardoning and domestic usc in the long dry scason.

The hardware and scftwere of water managoment in northeast Thailand are often hard to otserve. Most systems sre emall, for example a dozen households with thirly hectures receiving supplementary irrigation. Farmers organize informally, mobilizing resources on an ad hoc basis to build and rebuild earth weirs. Most conflicts are avoided, repressed, or carried on covertly. The usual pattern of water allocation requires little coordination; those with best access, who can get the water first, take all they need and then pass on any excess by field to ficld flow. There is usually no prescribed or formal plan for water distribution. The final pattern of water management is the result of many interdependent decisions and actions, the product of managed conflict.

Indigenous water management is opportunistic, adapted to uncertain rainfall. Management does not follow a fixed schedule but varies from year to ycar, responding to early and late rains, dry spells, floods and the success or failure of past efforts. While average annual rainfall in the northeast ranges from 1000 to 1500 millimeters per year, actual rainfall varies greatly from year to year. Dry spells are common during the rainy season from May to October. Farmers must be ready to make use of water when it is available. Rather than being able to rely on steady base flows, irrigation must depend largely
on peak stream flows which follow storins.

Much water management activity taves place while it is raining, when outaide obscrvers are unlikely to be present. Farmers control flows of water with inconspicuous wood, banboo or cement pipes, releasing water into ficlds and sending it on from ficld to field.

Paddy field dikes are a principal consenent of the traditional eystem of rontroing water. They hold water in, or krop it out. Dikes are a rajor site of mentenmec activity. Farmors reinforce dikes with wooden and bandoo stakes. Pare patches of earth show where farmers have recently added earth, to raise a dike or fill an eroded or washed out section. Bamboo and other plants help hold structures together. Maintenance of indigenous irrigation systems is laredy the process of maintaining earth structures.

Larger dikes and levees store water behind weirs and kecp it fren flooding fields. Earth weirs and levees blend into the landscape, resembling natural structures, with little to emphasize the large investments of labor and capial involved in construction. When villagers continue construction over many years, and perhaps hire tractors or bulldozers, the total investment easily adds up to hundreds of thousands of baht (U.S. $\$ 1=26$ baht). Construction may be done by individual households, groups of people with adjoining fields or by a village. The presence of levees, dikes and weirs in farmer managed irrigation should not be taken for granted. Rather, they reveal activity and investment to improve water control.

Canals may or may not form part of farmer managed irrigation systems. They allow wider and more rapid distribution of water than is possible
with field to field flow, tut use valuable land, and complex negotiatlons may bo requiret before they onn be built. The prasence of comis why indicate the awount of water diverted, the level of orgnaization which exinted in developing the eyetern and bow widoly benefits are distributod.

Stream chonnels store significent amounts of water backed up behird an earth or concrote weir. The still surface of the rinter says little rtout the amount stored or the invegturite made store it. Such storod later if a major reanurce fo: dry bescon u i:= for pumping durity the wet buson. frall pumps owned by fermers bite y bu:nd an increasiryly iugoriant roke in tho northeast. These purpis are freguerty used to lift witer stored behind weirs and move water between fielde. Concrete weirs often are built where farmers previously built earth veirs. Government funding and technical assistance huve incroased the refources available for managing water, but are placed within existing irrigation systems, rather than replacing previous patterna.

The seemingly natural landscape of paddy fields, dikes, larger embankments, paths and ditches is the result of large amounts of labor invested to improve water control. The invisibility of such systems hides the sophistication of water management which actually exists. Concrete weirs and motorized pumps are woven into this existing pottern as they increase the ability of farmers to move water to supply the noeds of crops. In order to understand the potential for change it is crucial to understand how farmers have managed water in the past.

Bryan Bruns

[^0]A? INCUTE IN FMIS:

I frosing strtus. Dovelopmest of in rigtion infrastructure both wh the indivirunl end cotionity lever has benn pecorded priesity under rocent tovervaent programa [in Nopay and arniferel. Financial anobinnce made runifeble to farmers las helped mitiate a barge number of irratation scitemes. A pro-requinite for auch projerta is furbias' acceptince of reanerement rrormeinility. An irtorennt cuncern if the delivery of withe for erturing 1 wher yontrement of thepe metiomes. Thete is a danger thal lle number of
 \& whe inseraon in ' ' wing pr artion underg pdequale aftration is given to this ineue.

> Fhehher Bd. Fithhan AEricultural Jovelopment Bank, Central Oftice
> Mathuandu, NLPAL

Farmor-Lo-Fermer Trdinitg. Programs to train farmers are ueualy orfanized by government truining inc:itutes; there has not boen much effort to tranefer managemont skills from farmere to other farmers. In Nepal, an experiment tock farnaers from poorlg-wanaged Fiis and newly completed Erency-reneged ayctems to vifit well-organised eyeteme: and diecuse merigemont iberes with the farmere there. Such ber"ens prisent an immediate contrasl, and farmers etart esking questions ubout their own contert: "1t they cen du it, why can't we do the stime thine?" We in Nepal would lite to hear of ettempts to transfer menagenent plille from farmer to farmer that heve bion tried elsewhere. If you have, any informetion or erpsrience esborit this please let us know.

Dr. Prachanda Pradhen
MMI-Hepel
P.O. Box 3975

Kathrandu, NRPAL

[^0]: P.O. Box 43 Amphur Musng

 Khon Kaen 4000
 THAILAND

