SCHÖBITZ: Business Model Innovations for Scaling-up FSM Businesses in Low- and Middle-income Countries

BUSINESS MODEL INNOVATIONS FOR SCALING-UP FSM BUSINESSES IN LOW- AND MIDDLE-INCOME COUNTRIES

Lars Schöbitz*, Heiko Gebauer, David Robbins, Miriam Otoo, Pay Drechsel, Vishwanath Srikantaiah, and Linda Strande

(1) Eawag (Swiss Federal Institute of Aquatic Science & Technology)
 Sandec (Department of Water & Sanitation in Developing Countries)
 P.O. box 611, 8600 Dübendorf, Switzerland; www.sandec.ch

(2) RTI International, www.rti.org

(3) IWMI (International Water Management Institute), Colombo, Sri Lanka

(4) Biome, Bangalore, India

(5) Eawag (Swiss Federal Institute of Aquatic Science & Technology)
 Cirus (Centre for innovation research in utility sectors)

* Corresponding author:

The majority of urban populations in low- and middle-income countries rely on onsite sanitation systems, which produce large amounts of faecal sludge. Collecting and treating faecal sludge could provide a viable business opportunity for private firms or public organizations. Despite the increasing efforts to create sustainable and economically viable businesses in the context of faecal sludge management (FSM), most businesses are still in the mode of securing their existence and maintaining their survival. Success is limited, and businesses have not been able to scale-up. Scaling-up entails reaching a critical mass and being able to cover a certain geographical service area. Scaling-up implies that the business provides reliable emptying services, which are affordable for poor people. An example of scaling-up is that businesses not only provide emptying services, but also faecal sludge treatment and resource recovery. IWMI and Sandec/Eawag are exploring the role of business model innovations in the scaling-up process of faecal sludge management. Our preliminary results suggest two distinct paths on how business model innovations can drive the scaling-up processes: (i) organic business growth; and (ii) replication of micro-enterprises. The first path represents a typical ‘organic’ business growth path. An ‘organic’ business growth means that the FSM enterprise attempts to make a stepwise extension of the business. Critical innovations in the business model refer to the tariff system, business planning and execution, and the market development for value added end-products. As an example, we will present Manila Water in the Philippines, and their success in scaling up FSM. The second path refers to a replication of micro-enterprises. Micro-enterprises are small firms, that specialize in FSM. They are operated with few employees (e.g. entrepreneur, helper, driver). Micro-enterprises compete with each other, which, in turn, helps lead to affordable prices. To remain profitable, the micro-enterprises have to drive business model innovations. Compared to path one, the business model innovations are not driven by a single organization, but rather through collective actions among the micro-enterprises. Path two illustrates “coopetition”. Coopetition means micro-enterprises compete to find customers, but cooperate in technology innovation to drive down costs, and innovate treatment technologies and resource recovery. As an example, we will present honey sucker businesses in Bangalore, India. The paper contributes to a better understanding of business challenges in the scaling-up process of FSM. It provides guidance for increasing geographical coverage, enhancing usage of emptying services, and increasing affordability of sanitation services at the household level.
MARKET DEMAND FOR END-PRODUCTS OF FAECAL SLUDGE TREATMENT IN KAMPALA, ACCRA, AND DAKAR

* College of Engineering, Design, Art and Technology - Makerere University, P.O Box 7062, Kampala, Uganda
** Eawag: Swiss Federal Institute of Aquatic Science and Technology, Sandec: Department of Water and Sanitation in Developing Countries, Dübendorf, Switzerland
*** Institut de Sciences de l'Environnement ISE, Université Cheikh Anta Diop, Dakar, Senegal
**** University of Ghana, Legon

Sanitation systems throughout urban areas of Sub-Saharan Africa are characterized by poorly maintained on-site sanitation systems, dysfunctional faecal sludge (FS) collection and transport, and disposal of untreated or inadequately treated FS directly into the environment. The situation could be improved through the development and implementation of reuse-oriented value chains, changing FS management from a focus of disposal problems, to generators of valuable end-products. This model captures resources in FS, and can provide a profit motive for the on-going collection and transport to treatment facilities. The aim of this study was to identify the market demand for innovative end-products in Kampala (Uganda), Accra (Ghana) and Dakar (Senegal). An iterative method for selecting interview partners was chosen. This included the following approaches: i) focus group discussions, ii) open-ended, semi-structured interviews, and iii) spontaneous enquiries and visits of relevant enterprises/entrepreneurs.

The identified market demand in the three cities include: (i) dried FS as alternative fuel in industries; (ii) dewatered FS as a feed source for black soldier fly larvae to produce animal protein; (iii) FS as a feedstock for biogas production; and (iv) treated as soil conditioner in agriculture. Industrial use of FS as a fuel was most promising in Kampala, where 60% of industries are using solid fuels (e.g. burning wood), compared to Dakar and Accra where the majority of industries are using electricity and liquid fuels (e.g. diesel). The market for biogas in Dakar was negligible, but was more promising in Accra and Kampala, where an estimated 1.44 million m3 per year of biogas with a market value of USD 490,000 and 73,000 m3 with a value of USD 36,000, respectively. Most of the farmers in the three cities were already using organic fertilizers and were positive towards the use of FS as a soil conditioner. In all the three cities, treated sludge is already utilized in some form; FS as a soil conditioner and sewage sludge as bio-digester feedstock in Dakar; FS as soil conditioner in Accra; and treated sewage sludge as a soil conditioner by farmers and landscapers in Kampala. The identified markets provide many promising opportunities for the future sale and resource recovery of FS treatment end-products.