Role of policies and development interventions in pastoral resource management: The Borana rangelands in southern Ethiopia

A. Kamara, B. Swallow and M. Kirk

International Water Management Institute
P.O. Box 2075, Colombo, Sri Lanka

International Livestock Research Institute
P.O. Box 30709, Nairobi, Kenya
Working Papers Editorial Committee
Samuel E. Benin (Editor)
Mohamed M. Ahmed
Berhanu Gebremedhin
Steven J. Stad

SePR Working Papers contain results of research done by ILRI scientists, consultants and collaborators. The Working Papers are not subjected to full refereeing and are disseminated to motivate discussion and comment. It is expected that most of the Working Papers will be published in some other form. The author(s) alone is (are) responsible for the contents.

Authors’ affiliations
Abdul Kamara, International Water Management Institute (IWMI), Africa Office, Private Bag X813, 0127 Silverton, Pretoria, South Africa
Brent Swallow, International Centre for Research in Agroforestry (ICRAF), P.O. Box 30677, Nairobi, Kenya
Michael Kirk, Department of Economics, Institute for Cooperation in Developing Countries, Phillips University of Marburg, Am Plan 2, D-35032 Marburg, Germany

© 2003 ILRI (International Livestock Research Institute)
All rights reserved. Parts of this publication may be reproduced for non-commercial use provided that such reproduction shall be subject to acknowledgment of ILRI as holder of copyright.

Table of Contents
List of Tables.. iv
List of Figures.. v
Acknowledgements.................................... vi
Abstract... vii
1 Introduction....................................... 1
2 Social dimensions of resource use 3
2.1 The policy context................................ 4
2.2 Processes of property rights and land use change 5
2.3 Pathways to intensification and land use change 5
3 Methodology and data collection 7
3.1 Socio-economic characteristics of the sample communities 7
3.2 Land use, property rights and development pathways in Borana .. 8
4 In-depth analysis of trends in land use and property rights 11
4.1 Detailed data 12
4.2 Findings in Soble and Arbate communities 14
4.2.1 Ban on bushfire methods of pasture improvement 15
4.2.2 Creation of peasant associations 16
4.2.3 Special support for cultivation 17
4.2.4 Other policy related events 18
4.2.5 Development interventions 18
4.3 Findings in Didakilenso and Oandulena communities 18
4.3.1 Policy-induced changes 19
4.3.2 Development interventions 20
4.4 Drought events 21
5 Development pathways and institutional change in Borana 24
5.1 Conceptualising land use and property rights in Borana 24
5.2 Pathways to property rights and land use change 26
5.3 Conclusions 27
5.4 Policy implications 28
References ... 29
Annexes .. 33

Working Papers Editorial Committee
Samuel E. Benin (Editor)
Mohamed M. Ahamed
Berhanu Gebremedhin
Steven J. Staal

SePR Working Papers contain results of research done by ILRI scientists, consultants and collaborators. The Working Papers are not subjected to full refereeing and are disseminated to motivate discussion and comment. It is expected that most of the Working Papers will be published in some other form. The author(s) alone is (are) responsible for the contents.

Authors’ affiliations
Abdul Kamara, International Water Management Institute (IWMI), Africa Office, Private Bag X813, 0127 Silverton, Pretoria, South Africa
Brent Swallow, International Centre for Research in Agroforestry (ICRAF), P.O. Box 30677, Nairobi, Kenya
Michael Kirk, Department of Economics, Institute for Cooperation in Developing Countries, Philips University of Marburg, Am Plan 2, D-35032 Marburg, Germany

© 2003 ILRI (International Livestock Research Institute)
All rights reserved. Parts of this publication may be reproduced for non-commercial use provided that such reproduction shall be subject to acknowledgment of ILRI as holder of copyright.

Table of Contents
List of Tables .. iv
List of Figures ... v
Acknowledgements .. vi
Abstract .. vii
1 Introduction .. 1
2 Social dimensions of resource use 3
 2.1 The policy context .. 4
 2.2 Processes of property rights and land use change 5
 2.3 Pathways to intensification and land use change 5
3 Methodology and data collection ... 7
 3.1 Socio-economic characteristics of the sample communities 7
 3.2 Land use, property rights and development pathways in Borana 8
 4 Indepth analysis of trends in land use and property rights 11
 4.1 Detailed data .. 12
 4.2 Findings in Soble and Arbate communities 14
 4.2.1 Ban on bushfire methods of pasture improvement 15
 4.2.2 Creation of peasant associations 16
 4.2.3 Special support for cultivation 17
 4.2.4 Other policy related events 18
 4.2.5 Development interventions 18
 4.3 Findings in Didakilen and Gandulens communities 18
 4.3.1 Policy-induced changes 19
 4.3.2 Development interventions 20
4.4 Drought events ... 21
5 Development pathways and institutional change in Borana 24
 5.1 Conceptualising land use and property rights in Borana 24
 5.2 Pathways to property rights and land use change 26
 5.3 Conclusions ... 27
 5.4 Policy implications .. 28
References ... 29
Annexes ... 33

List of Tables

Table 1. Characteristics of sample communities 8
Table 2. A diary of droughts and excessive rains in the Borana
rangelands (1971-98). ... 22
Annex I. Level and variability of rainfall across selected sites,
1982-96 .. 33
Annex II. Physical characteristics of the four communities
in the detailed analysis ... 33
Annex III. Demographic attributes of the four communities
in the detailed analysis ... 34

List of Figures

Figure 1. Formal and informal institutions in Borana 4
Figure 2. Land use patterns and property regimes in percentage of land area ... 9
Figure 3. Characteristics and distribution of sample communities in the study area ... 12
Figure 4. Policies, interventions and drought events in Borana (1974-98) ... 13
Figure 5. A model of property rights and land use change in Borana ... 25
List of Tables

Table 1. Characteristics of sample communities ... 8
Table 2. A diary of droughts and excessive rains in the Borana
rangelands (1971-98) ... 22
Annex I. Level and variability of rainfall across selected sites,
1982-96 .. 33
Annex II. Physical characteristics of the four communities
in the detailed analysis .. 33
Annex III. Demographic attributes of the four communities
in the detailed analysis ... 34

List of Figures

Figure 1. Formal and informal institutions in Borana 4
Figure 2. Land use patterns and property regimes in percentage of land area 9
Figure 3. Characteristics and distribution of sample communities in the study area. 12
Figure 4. Policies, interventions and drought events in Borana (1974-98) 13
Figure 5. A model of property rights and land use change in Borana 25
Acknowledgements

The research reported in this paper was conducted under the ‘Property rights, risk and livestock development’ collaborative project undertaken between the International Food Policy Research Institute (IFPRI) and the International Livestock Research Institute (ILRI). The authors are very grateful for the financial support provided for the project by the German Federal Ministry for Economic Cooperation and Development (BMZ) through the German Agency for Technical Co-operation (GTZ). The authors are also thankful to Peter Hazell, Ruth Meinzen-Dick, Nancy McCarthy, Simeon Ehui and Mohammad Jabbar for insightful comments and suggestions during the research. The valuable contributions of our collaborators in Ethiopia, especially CARE International (Ethiopia) and the Southern Rangelands Development Unit and many research assistants and consultants (especially Godana Wario, Million Kebede and Akilul Alemu) who worked in the project, are gratefully acknowledged.

Abstract

The Borana rangelands of southern Ethiopia are characterised by extensive livestock production in response to the area’s natural characteristics—aggregate mean rainfall ranges between 300 and 900 mm per annum with high seasonal and inter-annual variability. Though traditionally transhumant pastoralists, the Boranas have recently increased their reliance on crops, with evidence of communal pastures becoming either privatised, or accessible to only a small sub-group of individuals or households. Built on earlier quantitative assessment of the socio-economic drivers of the above changes, this paper focuses on the role of national level policies implemented in the area over the past decades, and how these have affected the traditional institutional setting that determines land use, property rights and pathways of livestock development. Intensive literature review was combined with in-depth key informant and group interviews to identify key policies and interventions, assess their impacts and explore the responses and strategies adopted at both individual and community levels to cope with the changing situation. While acknowledging the role of demographic and market forces as highlighted in the quantitative assessment, the paper concludes that different pathways from transhumant pastoralism have been shaped by policies and external interventions.
Acknowledgements

The research reported in this paper was conducted under the 'Property rights, risk and livestock development' collaborative project undertaken between the International Food Policy Research Institute (IFPRI) and the International Livestock Research Institute (ILRI). The authors are very grateful for the financial support provided for the project by the German Federal Ministry for Economic Cooperation and Development (BMZ) through the German Agency for Technical Co-operation (GTZ). The authors are also thankful to Peter Hazell, Ruth Meinzen-Dick, Nancy McCarthy, Simeon Ehui and Mohammad Jabbar for insightful comments and suggestions during the research. The valuable contributions of our collaborators in Ethiopia, especially CARE International (Ethiopia) and the Southern Rangelands Development Unit and many research assistants and consultants (especially Godana Wario, Million Kebede and Adiliu Alemu) who worked in the project, are gratefully acknowledged.

Abstract

The Borana rangelands of southern Ethiopia are characterised by extensive livestock production in response to the area's natural characteristics—aggregate mean rainfall ranges between 300 and 900 mm per annum with high seasonal and inter-annual variability. Though traditionally transhumant pastoralists, the Boranas have recently increased their reliance on crops, with evidence of communal pastures becoming either privatized, or accessible to only a small sub-group of individuals or households. Built on earlier qualitative assessment of the socio-economic drivers of the above changes, this paper focuses on the role of national level policies implemented in the area over the past decades, and how these have affected the traditional institutional setting that determines land use, property rights and pathways of livestock development. Intensive literature review was combined with in-depth key informant and group interviews to identify key policies and interventions, assess their impacts and explore the responses and strategies adopted at both individual and community levels to cope with the changing situation. While acknowledging the role of demographic and market forces as highlighted in the quantitative assessment, the paper concludes that different pathways from transhumant pastoralism have been shaped by policies and external interventions.
1 Introduction

The Borana rangelands occupy an area of about 95 thousand km² in southern Ethiopia. The area is semi-arid with highly variable rainfall that ranges between 300 and 900 mm per annum, with high spatial and temporal variability. The dominant ethnic group in the area are the Borana, whose livelihoods mainly depend on extensive livestock production—predominantly cattle and small numbers of small ruminants, camels, and donkeys. Boranas are Oromo-speaking Cushitic people, believed to have converged from other parts of the country to the south-west during the second half of the 17th century (Basist 1997). The area has a good ecological potential for livestock production (Billé 1983), which is the primary reason for intermittent conflicts arising between neighbouring groups contesting the area. The semi-arid attributes subject the area to recurrent droughts, the impact of which often reaches a life-threatening extent (Coppock 1994). Despite these constraints, the Borana have, until recently, continued to produce livestock with prolific success, and with such a remarkable social organisation that has often been cited as a model of pastoralism in sub-Saharan Africa (Hogg 1997).

The system is currently in a process of transition from the traditional transhumance system. Under this system, traditional elders who define rules and ensure the implementation of sanctions and penalties administer rangeland resources. Although a significant proportion of the resources (pastures and water) are still held under common property, the past 25 years have witnessed a dramatic increase in land allocated to crops, and land in pastures that are either becoming privatised, or accessible to only small sub-groups of individuals and households. While studies on the factors driving these changes remain limited, recent contributions focus mainly on the role of socio-economic, market and demographic variables (Coppock 1994; Desta 2000; McCarthy et al. 2002). The bulk of these studies conclude that changes in Borana are primarily driven by demographic, market and environmental forces, while others specifically highlight the possible role of policy variables as being co-drivers of the observed changes (Kerven and Cox 1996; Helland 1982; Basist 1997; Swallow and Kamara 1999). These propositions, however, only remain hypothetical, as there is limited exploration of the role of specific policy variables, and how these have combined with various development interventions to lead to the observed institutional outcomes. In particular, the creation of peasant associations (PAs),1 forced sedentarisation of pastoralists, government ban on traditional pasture improvement methods, and a host of development interventions are strongly hypothesised to have played a role in shaping institutional change in Borana.

This paper focuses on the role of national and local level policies implemented over the past decades and explores how these have affected the traditional institutional setting that determines land use, property rights and pathways of livestock development. The

1. Peasant associations (PAs) are officially created administrative structures that merge many small traditional communities (and) into one administration. In terms of physical size, the PA competes to the highest traditional administrative unit (madda). However, PA boundaries often never coincide with madda boundaries, blending parts of different madda into one PA, leading to resource use conflicts.
study seeks to clarify the role of policy variables in driving institutional change among the Borana community and explain how these have affected local level resource management. As a driving hypothesis, the study posits that national policies and development interventions are as important as socio-economic, market and biophysical variables and sets out to assess the role of these factors in driving property rights and land use change in Borana.

The paper is divided into four main sections. Section 2 deals with the social organisation of the Borana, highlighting traditional institutions that have hitherto regulated resource use, and presents a synoptic overview of the political context that may have affected resource use in Borana. This section also briefly revisits theoretical issues related to property rights and land use change. Section 3 deals with the research methodology and presents a summary of related research results. Section 4 highlights the emerging pathways to intensification and land use change in Borana and discusses policy implications while Section 5 presents an in-depth analysis of the research results.

2 Social dimensions of resource use

The social organisation and traditional system of resource management in Borana has survived for centuries independent of the formal administration. The highest council under the system is the ada council, which divides the entire rangelands into traditional grazing-based administrative units called madda. The madda on their part are centred around permanent water sources, usually traditional deep wells, which are vital to Borana pastoralism. All economic and social life revolves around the wells. The madda is further divided into sub-grazing units called awa, which consist of a few encampments that have jurisdiction over some form of grazing area, cultivated land and to a lesser extent, on water resources. The encampments or awa, which comprise about ten households, are the smallest administrative units in the traditional system. There are selected councils of elders at each of these levels who are responsible for managing the over all affairs of their respective communities in a manner that ensures the implementation of resource use rules and regulations in the community (Legesse 1973).

Grazing resources in Borana—pastures and water—are largely owned at the community level and administered by a council of elders and clan representatives (Figure 1). Under this system, pastures are demarcated in different levels of common property regimes called fora, wasa and calf enclosures. Fora areas are designated for the grazing of bulls and non-lactating cows (dry herds) and are customarily open to the entire Borana community regardless of origin. Such areas are primarily regarded as fall-back areas during periods of forage scarcity, but not for permanent settlement. The second level of common property, the wasa areas, are grazing areas for lactating cows and frail animals, and are only open to members of one group of the ada community, but can sometimes be used by members of a different ada under reciprocal arrangements. Grazing in wasa areas is unrestricted except during periods of forage scarcity, when herd-splitting2 agreements force dry herds to migrate. The third level, the calf enclosures, consist of thorn-fenced fodder-banks that are reserved for grazing by calves as well as sick and weak animals during periods of forage scarcity. The use of enclosures is restricted only to members of the custodian encampment or ada community, who contribute to the collective investment, including labour for fencing, bush clearing and cleaning of surrounding water sources. Water resources consist largely of ponds and traditional deep wells. Each water source is subject to a complex set of restrictions, rules and regulations that are administered and enforced by selected agents under the surveillance of the traditional elders.

As depicted in Figure 1, the system previously did not directly conform to the formal administrative structure and hence had little reliance on it. Rather it maintained its authority and functioning largely based on social norms, values, beliefs and traditional mechanisms of sanctioning that were used to devise resource use rules and ensure compliance. These rules and regulations were continually adapted over time to adjust human and livestock populations to the changing capacity of the natural resource base.

2. Herd splitting in Borana refers to the separation of dry herds (non-lactating cattle) from the rest of the herd so that they can be moved over long distances in search of better forage.
study seeks to clarify the role of policy variables in driving institutional change among the Borana community and explain how these have affected local level resource management. As a driving hypothesis, the study posits that national policies and development interventions are as important as socioeconomic, market and biophysical variables and sets out to assess the role of these factors in driving property rights and land use change in Borana.

The paper is divided into four main sections. Section 2 deals with the social organisation of the Borana, highlighting traditional institutions that have hitherto regulated resource use, and presents a synoptic overview of the political context that may have affected resource use in Borana. This section also briefly revisits theoretical issues related to property rights and land use change. Section 3 deals with the research methodology and presents a summary of related research results. Section 4 highlights the emerging pathways to intensification and land use change in Borana and discusses policy implications while Section 5 presents an in-depth analysis of the research results.

2 Social dimensions of resource use

The social organisation and traditional system of resource management in Borana has survived for centuries independent of the formal administration. The highest council under the system is the ada council, which divides the entire rangelands into traditional grazing-based administrative units called madda. The madda on their part are centred around permanent water sources, usually traditional deep wells, which are vital to Borana pastoralism. All economic and social life revolves around the wells. The madda is further divided into sub-grazing units called awda, which consist of a few encampments that have jurisdiction over some form of grazing area, cultivated land and to a lesser extent, on water resources. The encampments or olai, which comprise about ten households, are the smallest administrative units in the traditional system. There are selected councils of elders at each of these levels who are responsible for managing the over all affairs of their respective communities in a manner that ensures the implementation of resource use rules and regulations in the community (Legesse 1973).

Grazing resources in Borana—pastures and water—are largely owned at the community level and administered by a council of elders and clan representatives (Figure 1). Under this system, pastures are demarcated in different levels of common property regimes called fomma, wamna and calf enclosures. Fomma areas are designated for the grazing of bulls and non-lactating cows (dry herds) and are customarily open to the entire Borana community regardless of origin. Such areas are primarily regarded as fallback areas during periods of forage scarcity, but not for permanent settlement. The second level of common property, the wamna areas, are grazing areas for lactating cows and frail animals, and are only open to members of one group of the ada community, but can sometimes be used by members of a different ada under reciprocal arrangements. Grazing in wamna areas is unrestricted except during periods of forage scarcity, when herd-splitting agreements force dry herds to migrate. The third level, the calf enclosures, consist of thatched-fenced fodder-banks that are reserved for grazing by calves as well as sick and weak animals during periods of forage scarcity. The use of enclosures is restricted only to members of the custodian encampment or ada community, who contribute to the collective investment, including labour for fencing, bush clearing and cleaning of surrounding water sources. Water resources consist largely of ponds and traditional deep wells. Each water source is subject to a complex set of restrictions, rules and regulations that are administered and enforced by selected agents under the surveillance of the traditional elders.

As depicted in Figure 1, the system previously did not directly conform to the formal administrative structure and hence had little reliance on it. Rather it maintained its authority and functioning largely based on social norms, values, beliefs and traditional mechanisms of sanctioning that were used to devise resource use rules and ensure compliance. These rules and regulations were continually adapted over time to adjust human and livestock populations to the changing capacity of the natural resource base.

2. Herd splitting in Borana refers to the separation of dry herds (non-lactating cattle) from the rest of the herd so that they can be moved over long distances in search of better forage.
There was, thus, a traditional mechanism in place that regulated human and livestock activities to the capacity of the environment.

2.1 The policy context

As is the case with pastoralists elsewhere, the traditional setting of the Borana pastoralists encountered the impacts of various policies and development interventions over the past decades. Reforms in many parts of post-colonial Africa were largely based on models of private property rights or declaration of de facto state property rights over land resources (Tolossa and Asfaw 1995; Kirk 1990). In Ethiopia, the reforms largely followed a socialist reform with redistributive motives and were associated with three distinct phases of policy shocks in the country. These phases correspond to the period of the monarchy before 1974, the socialist government that reigned from 1974 or the Derg regime, and the Federal Democratic Republic Government of Ethiopia (post Derg) from 1991 to the present. Each phase is characterised by policy changes that have very important implications for different production systems in diverse sections of the country (Bruce et al. 1994). Land policies before the Derg regime favoured the feudal landlords but paid little attention to pastoral areas, which were largely unaffected by policies at that time. The Derg regime nationalised land, established state farms and ranches, initiated settlement programmes (sedentarisation of pastoralists) and peasant associations, forced livestock sales, laid a ban on wildlife and provided special support for cultivation. Although most of these policies have been repealed since the demise of the Derg in 1991, there is still some evidence of disruption of the social system and values of mobile pastoralism. This is coupled with a host of development interventions that are believed to have affected pastoral livestock production in Borana.

2.2 Processes of property rights and land use change

Two models (demand-led and supply-led) have been put forward to explain changes in property rights, land use and institutional change (Demertz 1967; Anderson and Hill 1975; Pomer 1977). The demand-led model is consistent with the postulates and theories of agricultural intensification, but emphasises that the redefinition of property rights by communities follows a need to internalise externalities that are inevitable agents of population growth and expansion of market opportunities. It also contends that property rights would evolve if the benefits for establishing and enforcing private rights exceed the costs (Demertz 1967; Plateau 1995). Though with some criticism, the demand-led model is largely accepted because factor scarcities and market opportunities change people’s preferences for different property rights. This consideration forms the basis of the quantitative assessment in the first part of the analysis.

Many authors have, however, expanded this model in various ways, by incorporating the concept of marginal benefits and costs associated with the definition and enforcement of property rights (Anderson and Hill 1973), discrete jumps in changing property rights and the irreversible nature of property rights change (Howitt 1993), inducing institutional innovation with special attention to factors affecting the supply of institutional innovation (Ruttan and Hayami 1985) and considering the interest-groups and reenacting theories of property rights change. North (1992, 1994, 1995) focused on the dependency of institutional change on path, citing the importance of individual and shared ‘mental models’, which are used to explain certain patterns of change among communities. The in-depth analysis is largely based on the elements of these theories.

2.3 Pathways to intensification and land use change

The concept of development pathways has been fairly established in recent studies highlighting local level processes of intensification and land use change (Lele and Stone
There was, thus, a traditional mechanism in place that regulated human and livestock activities to the capacity of the environment.

2.1 The policy context

As is the case with pastoralists elsewhere, the traditional setting of the Borana pastoralists encountered the impacts of various policies and development interventions over the past decades. Reforms in many parts of post-colonial Africa were largely based on models of private property rights or declaration of de facto state property rights over land resources (Tolossa and Asfaw 1995; Kirk 1999). In Ethiopia, the reforms largely followed a socialist reform with redistributive motives and were associated with three distinct phases of policy shocks in the country. These phases correspond to the period of the monarchy before 1974, the socialist government that reigned from 1974 or the Derg regime, and the Federal Democratic Republic of Ethiopia (post Derg) from 1991 to the present. Each phase is characterised by policy changes that have very important implications for different production systems in diverse sections of the country (Bruce et al. 1994). Land policies before the Derg regime favoured the feudal landlords but paid little attention to pastoral areas, which were largely unaffected by policies at that time. The Derg regime nationalised land, established state farms and ranches, initiated settlement programmes (sedentarisation of pastoralists) and peasant associations, forced livestock sales, laid a ban on wildlife and provided special support for cultivation. Although most of these policies have been repealed since the demise of the Derg in 1991, there is still some evidence of disruption of the social system and values of mobile pastoralism. This is coupled with a host of development interventions that are believed to have affected pastoral livestock production in Borana.

2.2 Processes of property rights and land use change

Two models (demand-led and supply-led) have been put forward to explain changes in property rights, land use and institutional change (Demsetz 1967; Anderson and Hill 1975; Pomper 1977). The demand-led model is consistent with the postulates and theories of agricultural intensification, but emphasises that the redefinition of property rights by communities follows a need to internalise externalities that are inevitable agents of population growth and expansion of market opportunities. It also contends that property rights would evolve if the benefits for establishing and enforcing private rights exceed the costs (Demsetz 1967; Flaherty 1995). Though with some criticism, the demand-led model is largely accepted because factor scarcities and market opportunities change people’s preferences for different property rights. This consideration forms the basis of the quantitative assessment in the first part of the analysis.

Many authors have, however, expanded this model in various ways, by incorporating the concept of marginal benefits and costs associated with the definition and enforcement of property rights (Anderson and Hill 1973), discrete jumps in changing property rights and the irreversible nature of property rights change (Howitt 1993), inducing institutional innovation with special attention to factors affecting the supply of institutional innovation (Ruttan and Hayami 1985) and considering the interest-groups and re-enacting theories of property rights change. North (1992, 1994, 1995) focused on the dependency of institutional change on path, citing the importance of individual and shared 'mental models', which are used to explain certain patterns of change among communities. The in-depth analysis is largely based on the elements of these theories.

2.3 Pathways to intensification and land use change

The concept of development pathways has been fairly established in recent studies highlighting local level processes of intensification and land use change (Lele and Stone...
Development pathways are defined by a set of causal factors, conditioning factors and local level responses that define a common pattern of change among communities. Demographic, market and technologically induced intensification factors are described, among others, in the postulates of Boserupian theory, which highlights the role of changing factor scarcities and prices. Lele and Stone (1989), among others, expanded upon these theories by incorporating the role of government policies in depicting the nature of institutional changes particularly in natural resource management at the local level. The impact of these variables, in particular groups of communities, will depend on the available institutions facilitating and/or endorsing the change and on community characteristics such as natural resource endowments and human and social capital—the presence of local institutions, rules, regulations and enforcement agents. These incentives may result in different pathways to intensification. Pender et al. (1996) referred to these as ‘conditioning factors’ that constrain resource use decisions at both the household and community levels, leading to different incentives that give rise to divergences in preferences for property regimes. The outcomes of these pathways are measurable in terms of changes in productivity, human welfare and natural resource conditions.

3 Methodology and data collection

The study was conducted at the ado-community level where resource management decisions are taken (Figure 1). The data collection was undertaken in two complementary phases during the 1997/98 production year. A first round of survey was conducted in 40 pastoral communities to appraise resource use patterns and property rights and generate basic socio-economic and demographic data. Divergence in rainfall conditions and market access were the main criteria for the selection of sample communities. Communities representing different rainfall patterns were selected: high mean with high coefficient of variation; high mean with low coefficient of variation; low mean with high coefficient of variation; and low mean with low coefficient variation, based on a 15-year monthly rainfall data (1982 to 1996). Using these criteria and a reference to 14 weather stations in the study area, a random sample of 40 communities were selected (see rainfall characteristics in Annex 1).

The first phase of the survey employed a combination of participatory appraisals and semi-structured interviews. The respondents included community elders, heads of encampments, heads of peasant associations, key informants such as water well managers and other group representatives, including women. Social mapping was done to provide insights into current land use patterns especially land allocation to crops, private grazing and land areas held under different property regimes. Geomorphic units such as mountains, valleys and depressions were visited to relate the observations to the discussions and resource use maps generated in the interviews. Private and common property grazing areas were appraised, followed by cultivated areas and adjacent enclosures. Measurement of boundaries was largely facilitated by geographic information system (GIS) techniques. The resource appraisal exercise was followed by intensive interviews consisting of structured questionnaires administered in group-discussions using the resource maps as baseline references.

3.1 Socio-economic characteristics of the sample communities

Socio-economic characteristics of the sample communities covered in the study are presented in Table 1. The 40 adas have a total population of 21,637 people grouped into 199 pastoral encampments comprising 3141 households. The area has a low population density with about 46 people/km² and four to eight people per household. The majority of the households are classified as poor, 26% of which are female headed. Cattle are the most important livestock species, with about 64,470 heads of cattle (45,130 TLU), accounting for about 90% of the total livestock holdings. Livestock...

3. In pastoral areas in eastern Africa, recent studies have revealed many factors driving changes in property rights and land use (Beierle 1996; Ernster 1992; Kirk 1994; Ruten 1995; Swallow and Kamara 1995). Focusing on Kenya, Ethiopia, Somalia and Sudan, the studies categorised the factors according to the pathways they depict, and broadly distinguished the processes into endogenous development of local commons, state sponsorship of local commons, state sponsorship of individualisation, endogenous individualisation, resilient customary systems, and creation of open access. Development of endogenous local commons may be a response to mounting pressure on local resources, in which formal recognition is sought to protect the resource base. State sponsorship of local commons relates to the supply-driven concept of group ranches, which was seen as a means of strengthening group-based property rights to increase efficiency. Endogenous individualisation—spontaneous enclosures based on individuals' judgment of profit—is also noted especially in Sudan and Somalia (Beierle 1996), and in southern Ethiopia (Swallow and Kamara 1995). While such individual responses, backed with formal support, may lead to destruction of functional common property systems as was evident in Butana in Sudan (Kirk 1996), some customary systems may continue to be resilient, responding to exogenous changes only as a group (McCabe 1993; Solis 1992).

4. Tropical livestock unit (TLU) is a unit of parameterisation for livestock of different sizes and species used to facilitate aggregation. Following the FAO standard conversion procedure, it is taken to be the equivalent of an animal with a liveweight of 250 kg. (Whitley 1982, 19). According to this procedure, TLUs are obtained by multiplying cattle by a factor of 0.7, sheep and goats by 0.1, camels by 1.0, donkeys by 0.7 and horses by 0.8.
Development pathways are defined by a set of causal factors, conditioning factors and local level responses that define a common pattern of change among communities. Demographic, market and technologically induced intensification factors are described, among others, in the postulates of Boasian theory, which highlights the role of changing factor scarcities and prices. Lele and Stone (1989), among others, expanded upon these theories by incorporating the role of government policies in depicting the nature of institutional changes particularly in natural resource management at the local level. The impact of these variables, in particular groups of communities, will depend on the available institutions facilitating and/or endorsing the change and on community characteristics such as natural resource endowments and human and social capital—the presence of local institutions, rules, regulations and enforcement agents. These incentives may result in different pathways to intensification. Pender et al. (1996) referred to these as ‘conditioning factors’ that constrain resource use decisions at both the household and community levels, leading to different incentives that give rise to divergences in preferences for property regimes. The outcomes of these pathways are measurable in terms of changes in productivity, human welfare and natural resource conditions.

3 Methodology and data collection

The study was conducted at the agro-community level where resource management decisions are taken (Figure 1). The data collection was undertaken in two complementary phases during the 1997/98 production year. A first round of survey was conducted in 40 pastoral communities to appraise resource use patterns and property rights and generate basic socio-economic and demographic data. Divergence in rainfall conditions and market access were the main criteria for the selection of sample communities. Communities representing different rainfall patterns were selected: high mean with high coefficient of variation; high mean with low coefficient of variation; low mean with high coefficient of variation; and low mean with low coefficient of variation, based on a 15-year monthly rainfall data (1982 to 1996). Using these criteria and a reference to 14 weather stations in the study area, a random sample of 40 communities were selected (see rainfall characteristics in Annex 1).

The first phase of the survey employed a combination of participatory appraisals and semi-structured interviews. The respondents included community elders, heads of encampments, heads of peasant associations, key informants such as water well managers and other group representatives, including women. Social mapping was done to provide insights into current land use patterns especially land allocation to crops, private grazing and land areas held under different property regimes. Geomorphologic units such as mountains, valleys and depressions were visited to relate the observations to the discussions and resource use maps generated in the interviews. Private and common property grazing areas were appraised, followed by cultivated areas and adjacent enclosures. Measurement of boundaries was largely facilitated by geographic information system (GIS) techniques. The resource appraisal exercise was followed by intensive interviews consisting of structured questionnaires administered in group-discussions using the resource maps as baseline references.

3.1 Socio-economic characteristics of the sample communities

Socio-economic characteristics of the sample communities covered in the study are presented in Table 1. The 40 arada have a total population of 21,637 people grouped into 199 pastoral encampments comprising 3,141 households. The area has a low population density with about 46 people/km² and four to eight people per household. The majority of the households are classified as poor, 26% of which are female headed. Cattle are the most important livestock species, with about 64,470 heads of cattle (45,130 TLU), accounting for about 90% of the total livestock holdings. Livestock

3. In pastoral areas in eastern Africa, recent studies have revealed many factors driving changes in property rights and land use (Belcher 1986; Evansinger 1992; Kirk 1994; Ratten 1995; Swallow and Kamara 1999). Focusing on Kenya, Ethiopia, Somalia and Sudan, the studies categorised the factors according to the pathways they depict, and broadly distinguished the processes into endogenous development of local commons, state sponsorship of local commons, state sponsorship of individualization, endogenous individualization, resilient customary systems, and creation of open access. The development of endogenous local commons may be a response to mounting pressure on local resources, in which formal recognition is sought to protect the resource base. State sponsorship of local commons relates to the supply-driven concept of group ranches, which was seen as a means of strengthening group-based property rights to increase efficiency. Endogenous individualization—spontaneous enclosures based on individuals' judgment of profits—also noted especially in Sudan and Somalia (Belcher 1986), and in southern Ethiopia (Swallow and Kamara 1999). While such individual responses, backed with formal support, may lead to destruction of functional common property systems as was evident in Butana in Sudan (Kirk 1994), some customary systems may continue to be resilient, responding to exogenous changes only as a group (McCabe 1998; Silove 1992).

4. Tropical livestock unit (TLU) is a unit of parameterisation for livestock of different species and areas used to facilitate aggregation. Following the FAO standard conversion procedures, it is taken to be the equivalent of an animal weighing 250 kg (belcher 1982, 1972). According to this procedure, TLUs are obtained by multiplying cattle by a factor of 0.7, sheep and goats by 0.1, camels by 1.0, donkeys by 0.7 and horses by 0.8.
holdings at the household level vary between 2.5 and 140 TLU for the poorer and wealthier households, respectively.

Table 1. Characteristics of sample communities (n = 48).

<table>
<thead>
<tr>
<th>Variable</th>
<th>Minimum</th>
<th>Maximum</th>
<th>Mean</th>
<th>Standard deviation</th>
<th>Sum</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Encampment per community</td>
<td>1.00</td>
<td>21.00</td>
<td>4.97</td>
<td>4.25</td>
<td>199</td>
<td>100.00</td>
</tr>
<tr>
<td>Community (adult) population</td>
<td>48.00</td>
<td>3160.00</td>
<td>540.93</td>
<td>610.00</td>
<td>21037</td>
<td>100.00</td>
</tr>
<tr>
<td>Population density</td>
<td>4.35</td>
<td>231.00</td>
<td>46.14</td>
<td>46.72</td>
<td>364</td>
<td>73.68</td>
</tr>
<tr>
<td>Female headed households</td>
<td>1.00</td>
<td>85.00</td>
<td>20.68</td>
<td>19.58</td>
<td>827</td>
<td>26.32</td>
</tr>
<tr>
<td>Male headed households</td>
<td>5.00</td>
<td>331.00</td>
<td>58.35</td>
<td>64.29</td>
<td>2314</td>
<td>73.68</td>
</tr>
<tr>
<td>Total</td>
<td>–</td>
<td>–</td>
<td>79.05</td>
<td>–</td>
<td>3141</td>
<td>100.00</td>
</tr>
<tr>
<td>Number of cattle (TLU)</td>
<td>46.00</td>
<td>9345.00</td>
<td>1128.20</td>
<td>2080.80</td>
<td>45128.3</td>
<td>90.34</td>
</tr>
<tr>
<td>Number of other animals (TLU)</td>
<td>4.70</td>
<td>1515.00</td>
<td>120.48</td>
<td>246.20</td>
<td>4819.7</td>
<td>9.64</td>
</tr>
<tr>
<td>Total (TLU)</td>
<td>50.70</td>
<td>9500.00</td>
<td>1248.69</td>
<td>2327.00</td>
<td>49948.0</td>
<td>100.00</td>
</tr>
<tr>
<td>Grazing land (ha)</td>
<td>186.85</td>
<td>5883.97</td>
<td>978</td>
<td>604</td>
<td>39112</td>
<td>83.67</td>
</tr>
<tr>
<td>Cultivated land (ha)</td>
<td>0.32</td>
<td>1050</td>
<td>191</td>
<td>230</td>
<td>7629</td>
<td>16.32</td>
</tr>
<tr>
<td>Total (ha)</td>
<td>249.17</td>
<td>5983.97</td>
<td>978</td>
<td>604</td>
<td>39112</td>
<td>100.00</td>
</tr>
<tr>
<td>Common property (ha)</td>
<td>174</td>
<td>2459</td>
<td>889</td>
<td>569</td>
<td>35541</td>
<td>76.02</td>
</tr>
<tr>
<td>Private property (ha)</td>
<td>32</td>
<td>1050</td>
<td>280</td>
<td>281</td>
<td>11200</td>
<td>23.94</td>
</tr>
<tr>
<td>Total (ha)</td>
<td>249</td>
<td>3074</td>
<td>1106</td>
<td>639</td>
<td>46741</td>
<td>100.00</td>
</tr>
</tbody>
</table>

a. Sum for all communities.

Source: Authors' field survey, 1997/98.

3.2 Land use, property rights and development pathways in Borana

The land use patterns show that about 16% of the land is currently allocated to crops while the remaining 84% is used for livestock production under various private grazing and common property arrangements, which include reserved areas for settlement and small ruminant grazing. About 50% of the land is allocated for small ruminant grazing (Figure 2), which is present in 85% of the sample communities. Cattle enclosures are present in about 80% of the communities but account only for 13% of the total land area, about 4% of which also belong to private individuals. Private enclosures of rangelands is a relatively new phenomenon and present in only 17% of the sample communities. Farm grazing area constitutes only 1.2% of the total land area and is present only in one community. Farm areas generally constitute the largest communal grazing areas in Borana. Such areas are, however, unsettled areas, which fall outside the boundaries of the sample communities, and hence, are almost absent in the investigated sample.

![Diagram of land use patterns and property rights](image)

(c = common property; p = private property)

Waves (c): Communal grazing areas for milking cows, calves as well as sick and weak animals. Farms (c): Unreserved communal grazing areas generally reserved for non-lactating cattle, unsettled areas, open to all Borana pastoralists (could not be included in sampling). Enclosures (c): Usually used mainly for calves during periods of forage scarcity. Enclosures (p): Private enclosures for grazing cattle belonging to individual households. Draft animals (p): Private enclosures adjacent to cultivated fields, for grazing draft animals. Cultivations (p): Cultivated areas belonging to individual households.

Other (c): Reserved areas around settlements for grazing small ruminants, camels and equines.

Figure 2. Land use patterns and property rights in percentage of land area.

Figure 2 also highlights the proportion of land held under different property regimes—common and private property. Property rights are defined both by the property institutions themselves and by their realisation as depicted by the amounts of land area held under different categories of property regimes. Private property rights are thus depicted by the land area held under private ownership and are made up of private enclosures for calves, cultivated land and adjacent areas for draft animals, which currently constitute about 24% of the total land area. Predominantly, grazing areas are managed as common property, which constitute 76% of the total land area. Private land ownership is relatively new and is largely based on usufruct, as there are not title deeds to land.

6. This could also imply that the estimated mean population densities for the sample communities are slightly higher than figures on the area as a whole. Differences over the entire Borana plateau are lower, because of these larger face areas to which all Borana people have access but which do not specifically belong to any particular community, and hence, are not considered in our population density estimates.
holdings at the household level vary between 2.5 and 140 TLU for the poorer and wealthier households, respectively.

Table 1. Characteristics of sample communities (n=48)

<table>
<thead>
<tr>
<th>Variable</th>
<th>Minimum</th>
<th>Maximum</th>
<th>Mean</th>
<th>Standard deviation</th>
<th>Sum</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Encumbrance per community</td>
<td>1.00</td>
<td>21.00</td>
<td>6.97</td>
<td>4.25</td>
<td>199</td>
<td>100.0</td>
</tr>
<tr>
<td>Community (adult) population</td>
<td>4.60</td>
<td>3100.0</td>
<td>540.93</td>
<td>610.00</td>
<td>21037</td>
<td>100.0</td>
</tr>
<tr>
<td>Population density^</td>
<td>4.35</td>
<td>218.00</td>
<td>46.14</td>
<td>46.72</td>
<td>99</td>
<td>100.0</td>
</tr>
<tr>
<td>Female headed households</td>
<td>1.00</td>
<td>85.00</td>
<td>20.68</td>
<td>19.58</td>
<td>827</td>
<td>26.32</td>
</tr>
<tr>
<td>Male headed households</td>
<td>5.00</td>
<td>331.00</td>
<td>58.35</td>
<td>64.29</td>
<td>2314</td>
<td>73.68</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td></td>
<td>79.05</td>
<td></td>
<td>3141</td>
<td>100.0</td>
</tr>
<tr>
<td>Number of cattle (TLU)</td>
<td>46.00</td>
<td>934.00</td>
<td>612.20</td>
<td>2080.80</td>
<td>45128.3</td>
<td>90.34</td>
</tr>
<tr>
<td>Number of other animals (TLU)</td>
<td>4.70</td>
<td>1515.00</td>
<td>120.88</td>
<td>246.20</td>
<td>48197</td>
<td>9.64</td>
</tr>
<tr>
<td>Total (TLU)</td>
<td>50.70</td>
<td>9495.00</td>
<td>633.08</td>
<td>2326.80</td>
<td>49944.0</td>
<td>100.0</td>
</tr>
<tr>
<td>Grazing land (ha)</td>
<td>186.8</td>
<td>2583.00</td>
<td>978</td>
<td>604</td>
<td>39112</td>
<td>83.67</td>
</tr>
<tr>
<td>Cultivated land (ha)</td>
<td>0.032</td>
<td>1050.00</td>
<td>191</td>
<td>230</td>
<td>7629</td>
<td>16.32</td>
</tr>
<tr>
<td>Total (ha)</td>
<td>249</td>
<td>3074.00</td>
<td>1168</td>
<td>639</td>
<td>46741</td>
<td>100.0</td>
</tr>
<tr>
<td>Common property (ha)</td>
<td>174</td>
<td>2459.00</td>
<td>889</td>
<td>569</td>
<td>35541</td>
<td>76.02</td>
</tr>
<tr>
<td>Private property (ha)</td>
<td>32</td>
<td>1050.00</td>
<td>280</td>
<td>281</td>
<td>11200</td>
<td>23.94</td>
</tr>
<tr>
<td>Total (ha)</td>
<td>249</td>
<td>3074.00</td>
<td>1168</td>
<td>639</td>
<td>46741</td>
<td>100.0</td>
</tr>
</tbody>
</table>

a. Sum for all communities.

b. Persons/livestock.

c. Other animals include sheep, goats, horses, camels and donkeys — not applicable.

Source: Authors' field survey, 1997-98.

3.2 Land use, property rights and development pathways in Borana

The land use patterns show that about 16% of the land is currently allocated to crops while the remaining 84% is used for livestock production under various private grazing and common property arrangements, which include reserved areas for settlement and small ruminant grazing^5^ About 50% of the total land is allocated for awra grazing (Figure 2), which is present in 85% of the sample communities. Calf enclosures are present in about 80% of the communities but account only for 13% of the total land area, about 4% of which also belongs to private individuals. Private enclosure of rangelands is a relatively new phenomenon and is present only in 17% of the sample communities. Farm grazing area constitutes only 1.2% of the total land area and is present only in one community. Farm areas generally constitute the largest communal grazing areas in Borana. Such areas are, however, unsettled areas, which fall outside the boundaries of the sample communities, and hence, are almost absent in the investigated area.

Figure 2 also highlights the proportion of land held under different property regimes—common and private property. Property rights are defined both by the property institutions themselves and by their realisation as depicted by the amount of land area held under different categories of property regimes. Private property rights are thus depicted by the land area held under private ownership and are made up of private enclosures for calves, cultivated land and adjacent areas for draft animals, which currently constitute about 24% of the total land area. Predominantly, grazing areas are managed as common property, which constitute 76% of the total land area. Private land area is relatively new and is largely based on usufruct, as there are no title deeds to 6.

5. Crops grown in the area include teff (the staple food in Ethiopia), maize, wheat, barley and beans, with average area cultivated by households ranging between 0.4 to an average of 2.4 ha.

6. This could also imply that the estimated mean population densities for the sample communities are slightly higher than figures on the area as a whole. Differences over the entire Borana plateau are lower, because of these larger farm areas to which all Borana people have access but which do not specifically belong to any particular community, and hence, are not considered in our population density estimation.
legitimise permanent claims. That is, the private owners enjoy use rights as long as the land is being isolated from the commons through cultivation or by fencing for grazing purposes. Such rights are granted by the community elders upon approval from the chairman of the peasant association (PA), who holds the highest prerogative for the allocation of land.

The current data highlight important emerging pathways of land use intensification and property rights changes in Borana. Land allocated to crops is increasing, though most of the enclosed areas for cultivation are actually used for grazing. Currently, about 80% of the sample communities contain some households that cultivate. About 30% of those adopted cultivation only in the last ten years, while only 10% have been cultivating for more than twenty years. Thus, crop production gained importance only in recent decades. Using aerial photographs, Asfaw et al. (1987) estimated that only 0.3% of the area was cultivated in 1982, compared to 1.4 and 16% in 1986 (Coppock 1994) and 1997/98 (the current study). Private enclosure of rangelands for grazing has also emerged in recent decades and is gradually increasing.

Econometric assessment of the determinants of these trends by using a sample of 40 communities in the initial analysis and focusing largely on rainfall variability, population density, market access as well as environmental and social capital variables (rules, regulations, violations and sanctions), has established a link between stock density and community level co-operation. This, in turn, was hypothesised as an incentive for individuals to acquire private land for cultivation and private grazing (Kamara 2001, 112–138). Though the econometric estimation further highlighted the relative importance of socio-economic, market and demographic determinants of land allocation to crops and to private pastures (Kamara 2001; McCarthy et al. 2002), rangeland privatisation remained virtually unexplained, suggesting the possible existence of other determinants not captured in this cross-sectional analysis. In particular, the impact of policy and development interventions on environmental and socio-economic variables and their effects on the dynamics of local level resource use remain unclear. This also creates a need for an in-depth analysis.

4 In-depth analysis of trends in land use and property rights

This detailed analysis is designed to provide a deeper understanding of the trends in land use and property rights and to assess the causes and consequences of these changes for pastoral livestock development in the area. It focuses on assessing policies, interventions and environmental factors believed to affect the dynamics of land use and property rights but which have not been adequately assessed by the quantitative analysis. This proposition is primarily driven by the realisation that changes in land use may involve wider processes of institutional change and which are best understood only under long-term considerations. These may include a broad range of issues such as national level land policies as related to local level institutions, including the forced merger of traditional institutions such as the madda into formally administered peasant associations. Government policies that gear towards the sedentarisation of pastoralists and special support for cultivation through price incentives and subsidised crops inputs and development interventions by government agencies as well as national and international non-governmental organisations (NGOs) at the local level and their consequences on traditional management institutions could be taken as other factors. Other phenomena also include, natural occurrences such as droughts, ethnic incursions associated with conflicts and loss of grazing territory. In particular, the in-depth analysis seeks to address the following detailed questions on:

- How the various policy reforms discussed above affect the authority of the traditional system in determining access to land, water and pasture on the Borana rangelands
- The types of development interventions carried out and in which specific areas—ranches, wells, resettlement, relief programmes etc.—and how these phenomena affect land use, property rights and livestock development
- Major events—droughts, conflicts and the resulting loss of territory and livestock—that occurred during these periods and how they contributed to the observed trends
- Whether communities exposed to similar production risks, incentives, land policies and interventions sometimes follow different pathways to intensification, and if so, what the long-term implications of the emergence of different pathways to intensification and land use change are.

The study seeks to address these questions aided by a detailed survey of sub-sample of four communities from among the 40 communities examined in the survey. By mapping out a chronological framework of occurrences and using a timeline of events, a longitudinal analysis is also conducted to explore various events mentioned in the research questions and possible implications for the dynamics of land use and property rights in the area. This is followed by a detailed analysis of the emerging pathways to livestock intensification and land use change and implications for livestock development.
4 In-depth analysis of trends in land use and property rights

This detailed analysis is designed to provide a deeper understanding of the trends in land use and property rights and to assess the causes and consequences of these changes for pastoral livestock development in the area. It focuses on assessing policies, interventions and environmental factors believed to affect the dynamics of land use and property rights but which have not been adequately assessed by the quantitative analysis.

This proposition is primarily driven by the realisation that changes in land use may involve wider processes of institutional change and which are best understood only under longer-term considerations. These may include a broad range of issues such as national level land policies as related to local level institutions, including the forced merger of traditional institutions such as the madda into formally administered peasant associations. Government policies that gear towards the sedentarisation of pastoralists and special support for cultivation through price incentives and subsidised crop inputs and development interventions by government agencies as well as national and international non-governmental organisations (NGOs) at the local level and their consequences on traditional management institutions could be taken as other factors.

Other phenomena also include, natural occurrences such as droughts, ethnic incursions associated with conflicts and loss of grazing territory. In particular, the in-depth analysis seeks to address the following detailed questions:

- How the various policy reforms discussed above affect the authority of the traditional system in determining access to land, water and pasture on the Borana rangelands
- The types of development interventions carried out and in which specific areas–ranches, wells, resettlement, relief programmes etc.–and how these phenomena affect land use, property rights and livestock development
- Major events–droughts, conflicts and the resulting loss of territory and livestock–that occurred during these periods and how they contributed to the observed trends
- Whether communities exposed to similar production risks, incentives, land policies and interventions sometimes follow different pathways to intensification; and if so, what the long-term implications of the emergence of different pathways to intensification and land use change are

The study seeks to address these questions aided by a detailed survey of sub-sample of four communities from among the 40 communities examined in the survey. By mapping out a chronological framework of occurrences and using a timeline of events, a longitudinal analysis is also conducted to explore various events mentioned in the research questions and possible implications for the dynamics of land use and property rights in the area. This is followed by a detailed analysis of the emerging pathways to livestock intensification and land use change and implications for livestock development.

7. With adjusted r of 0.41 and 0.18 for land allocation to crops and private pastures, respectively, the rangeland privatisation equation remained virtually unexplained by the cross-sectional analysis (see Kamara 2001, 133; McCarthy et al. 2002, 20).
4.1 Detailed data

Two pairs of *anda* (four communities) were purposefully selected, from among the sample of 40 communities in the econometric analysis, such that each pair exhibits similar agro-ecological, demographic, market and rainfall characteristics, but different trends of land use and property rights. This was done to analyse how communities follow different development pathways, despite exposure to similar socioeconomic and natural conditions. Based on inputs from community elders, extension workers and the results of the initial surveys, the above criteria led to the selection of Sable and Arbate in the *madda* of Wachile, and Didakilenassa and Gandullensa in the *madda* of Dembelawach, as shown in Figure 3.

The detailed data collection entailed two complementary activities: the identification of major policy events, development activities and the construction of a timeline of events, and the exploration of how these events affected local level resource management in each community. Through intensive discussions with community members (elders, water well managers, women's groups, extension workers) and guidance from secondary information obtained at the national, regional and district levels, various policy events and interventions were identified for each community. The identified policy events were cross-referenced against the suggestion of the key informants and respondents. Spending about three days in the community, the key informants produced a comprehensive checklist with the help of locally recruited field assistants. The list was standardised into a chronological chart of events, the timeline (Figure 4), using the traditional system of timing.

![Diagram showing timeline and key events](image)

Figure 4. Policies, interventions and drought events in Eswatini (1974-98).

Notes: SORDU - Southern Rangelands Development Unit; ILCA - International Livestock Centre for Africa; CARE - Cooperation and Relief Everywhere (an international NGO).

Figure 3. Characteristics and distribution of sample communities in the study area.
4.1 Detailed data

Two points of each (four communities) were perfectly echoed from among the sample size of 40 communities in the community analysis, such that each pair related similar conditions. Based on inputs from community elders, existing sectorial and the results of the rural surveys, the above criteria led the selection of Salka and Adake in the area of Dhamrai, and Salka and Fakirpur in the middle of Dhamrai, as distinguishable.
While the chart presents a general framework for the events recorded in all the communities, the specific occurrences differed slightly in magnitude and relative importance across the rangelands. The timeline is divided into three phases, corresponding to the three phases of policy shocks documented in Ethiopia in the last decades. The three annotated boxes on the upper section of the timeline depict these phases. Major land reforms such as eviction of feudal landlords, prohibition of land titling and sale, which had little or no effect in the area, were not explored.

Added to the policy elements, the chart further highlights the occurrence of droughts, and development interventions, as summarised in the three annotated boxes on the lower side of the timeline.

Following the timeline, retrospective data was elicited from the four communities over a two-month period, drawing largely on methods applied by Reid (1997). The events were investigated using guiding questions about changes before, during and after each event in the chart. Population censuses were conducted in the encampments of each community. This was followed by interviews consisting of semi-formal, open-ended questionnaires and group discussions with heads of encampments, elders, women’s groups, extension officers and heads of peasant associations. The reference timeline and the checklist of key variables were used to focus discussions on the dynamics of livestock and human populations and how these relate to each event, the causes and perceived consequences on land allocation patterns and how these are driven by policy processes and other events in the timeline. The interview was also supplemented by field visits and personal observations.

The characteristics of the communities are presented in Annexes II and III. All the communities exhibit low rainfall with high variability, with annual means of 353 and 473 mm/annum and coefficients of variation of 0.37 and 0.47, respectively, for the two selected pairs. Soble and Arbate exhibit large disparity in physical size, recording 18.8 and 5.6 km², respectively, while Dikdiandera and Ganelulensa average around 9.5 and 7.6 km², respectively. There is a great disparity in the livestock densities between the communities in each of the selected pairs. Mean livestock holdings are fairly identical in one pair, but significantly different in the other. Land use patterns and property rights are distinctly different in the first pair of communities but fairly identical in the second pair. In one pair, both communities maintain a large proportion of communal grazing areas, but show a divergence in the extent of group enclosures and cultivation. The demographic attributes differ in each pair of the communities. The number and distribution of encampments and households are fairly uniform within each pair, but differ across pairs (Annex III). The proportion of female-headed households is also fairly uniform, though population densities differ radically within the selected pairs of anadas.

4.2 Findings in Soble and Arbate communities

Both communities reported to have been in their current locations for very many decades, moving only once in the past 25 years due to ethnic conflict with the neighbouring Gari tribe in 1991/92. Arbate community are further reported to have been relocated for three years between 1976 and 1979, due to the Ethio-Somalia war. Besides such interruptions and seasonal transhumance, the two communities have been fairly sedentary. Both located in the peasant association of Wachile (Figure 3), the two anadas share similar experiences in terms of national policies, development interventions, rainfall and agro-ecological conditions and droughts. Thus, the divergence in current trends of land use and property rights is likely to be related to differences in strategies or responses to the various events documented in Figure 1.

Policy related discussions in all the communities were centred around the three distinct phases of policy shocks in Ethiopia, and associated events that had a direct impact on the communities. The fall of the monarchy in mid 1970s and the consequent emergence of the Derg regime engendered a series of changes. These include a ban on the bushfire method of pasture improvement, the creation of peasant associations, forced settlement of pastoralists, difficulty in livestock trade and issues related to the liberalisation of labour markets. Lasting for nearly two decades, these occurrences created some changes in production framework conditions and local level power relations.

4.2.1 Ban on bushfire methods of pasture improvement

Introduced in 1975/76, the nationwide policy affected the whole of the country, including communities in Borana. The immediate outcome was a pervasive bush encroachment mainly by acacia species of little or no forage value. A considerable part of valuable grazing areas were lost and subsequently abandoned each year. The emerging bush also suppresses pasture growth, reduces forage quality and the accessibility of grazing areas to animals. Besides this, the communities further reported the spread of tick-borne diseases and parasites that affected both human and livestock populations, while the bush further created a breeding ground for crawling creatures and wild animals. As perceived by the communities, the greatest impact was a general reduction in livestock holdings due to increased production risks—decreased forage availability, high incidence of diseases and exposure to wild animals and snakes.

Without an alternative to the traditional fire method of pasture improvement and reclamation, the communities employed local level mechanisms of adapting to the situation. Diversification into browsing animals (camels and goats) to cope with the emerging bush and to facilitate mobility was an immediate response in Arbate, and to a lesser extent in Soble. People in Soble further resorted to partitioning of communal grazing areas into enclosures for use by all members of the seven encampments of the anada community (Annex III), and excluding only non-anada members. As the situation worsened, these enclosures were further partitioned for use only by sub-groups of individuals belonging to one encampment, and in some cases by single households or a few households together. This could also have been facilitated by a relatively large anada size of 19 km², compared to 6 km² for Arbate (Annex III). The response in Arbate was different. Here, certain areas were indeed demarcated for grazing at certain periods of the year but for all the members of the anada community. The formation of more exclusive enclosures
While the chart presents a general framework for the events recorded in all the communities, the specific occurrences differed slightly in magnitude and relative importance across the rangelands. The timeline is divided into three parts, corresponding to the three phases of policy shocks documented in Ethiopia in the last decades. The three annotated boxes on the upper section of the timeline depict these phases. Major land reforms such as eviction of feudal landlords, prohibition of land titling and sale, which had little or no effect in the area, were not explored.

Added to the policy elements, the chart further highlights the recurrence of droughts, and development interventions, as summarised in the three annotated boxes on the lower side of the timeline.

Following the timeline, retrospective data was elicited from the four communities over a two-month period, drawing largely on methods applied by Reid (1997). The events were investigated using guiding questions about changes before, during and after each event in the chart. Population census was conducted in the encumbrances of each community. This was followed by interviews consisting of semi-formal, open-ended questionnaires and group discussions with heads of encumbrances, elders, women’s groups, extension officers and heads of peasant associations. The reference timeline and the checklist of key variables were used to focus the discussions on the dynamics of livestock and human populations and how these relate to each event, the causes and perceived consequences on land allocation patterns and how these are driven by policy processes and other events in the timeline. The interview was also supplemented by field visits and personal observations.

The characteristics of the communities are presented in Annexes II and III. All the communities exhibit low rainfall with high variability, with annual means of 353 and 473 mm/annum and coefficients of variation of 0.37 and 0.47, respectively, for the two selected pairs. Soble and Arbate exhibit large disparity in physical size, recording 18.8 and 5.6 km², respectively, while Didadkens and Gandulbens average around 9.5 and 7.6 km², respectively. There is a great disparity in livestock densities between the communities in each of the selected pairs. Mean livestock holdings are fairly identical in one pair, but significantly different in the other. Land use patterns and property rights are distinctly different in the first pair of communities but fairly identical in the second pair. In one pair, both communities maintain a large proportion of communal semi-grazing areas, but show a divergence in the extent of group enclosures and cultivation. The demographic attributes differ in each pair of the communities. The number and distribution of encumbrances and households are fairly uniform within each pair, but differ across pairs (Annex III). The proportion of female-headed households is also fairly uniform, though population densities differ radically within the selected pairs of adas.

4.2 Findings in Soble and Arbate communities

Both communities reported to have been in their current locations for very many decades, moving only once in the past 25 years due to ethnic conflict with the neighboring Gari tribe in 1991/92. Arbate community are further reported to have been relocated for three years between 1976 and 1979, due to the Ethio-Somalia war. Besides such interruptions and seasonal transhumance, the two communities have been fairly sedentary. Both located in the peasant association of Wachile (Figure 3), the two adas share similar experiences in terms of national policies, development interventions, rainfall and agro-ecological conditions and droughts. Thus, the divergence in current trends of land use and property rights is likely to be related to differences in strategies or responses to the various events documented in Figure 1.

Policy related discussions in all the communities were centred around the three distinct phases of policy shocks in Ethiopia, and associated events that had a direct impact on the communities. The fall of the monarchy in mid 1970s and the consequent emergence of the Derg regime engendered a series of changes. These include a ban on the bushfire method of pasture improvement, the creation of peasant associations, forced settlement of pastoralists, difficulty in livestock trade and issues related to the liberalisation of labour markets. Lasting for nearly two decades, these occurrences created some changes in production framework conditions and local level power relations.

4.2.1 Ban on bushfire methods of pasture improvement

Introduced in 1975/76, the nationwide policy affected the whole of the country, including communities in Borana. The immediate outcome was a pervasive bush encroachment mainly by acacia species of little or no forage value. A considerable part of valuable grazing areas were lost and subsequently abandoned each year. The emerging bush also suppresses pasture growth, reduces forage quality and the accessibility of grazing areas to animals. Besides this, the communities further reported the spread of tick-borne diseases and parasites that affected both human and livestock populations, while the bush further created a breeding ground for crawling creatures and wild animals. As perceived by the communities, the greatest impact was a general reduction in livestock holdings due to increased production risks—decreased forage availability, high incidence of diseases and exposure to wild animals and snakes.

Without an alternative to the traditional fire method of pasture improvement and reclamation, the communities employed local level mechanisms of adapting to the situation. Diversification into browsing animals (camels and goats) to cope with the emerging bush and to facilitate mobility was an immediate response in Arbate, and to a lesser extent in Soble. People in Soble further resorted to partitioning of communal grazing areas into enclosures for use by all members of the seven encumbrances of the adas community (Annex III), and excluding only non-adas members. As the situation worsened, these enclosures were further partitioned for use only by subgroups of individuals belonging to one enclosure, and in some cases by single households or a few households together. This could also have been facilitated by a relatively large adas size of 19 km² compared to 6 km² for Arbate (Annex III). The response in Arbate was different. Here, certain areas were indeed demarcated for grazing at certain periods of the year but for all the members of the adas community. The formation of more exclusive enclosures
was never permitted by the anda elders. While seasonal transhumance to fora areas (outside the community) was permitted, tremendous effort was exerted to maintain the whole community as a common grazing area for all. Both communities conceded that there was no enclosure before the ban on the use of fire for pasture improvement in the mid 1970s, giving evidence of policy-induced changes in local level resource management.

4.2.2 Creation of peasant associations

The communities recalled the creation of the peasant associations (PAs) in the mid-1970s, which are formally created administrative units that coincide with the traditional madda, or merge parts of different maddas. The much younger heads of new formal units or the PA-chairmen were vested with much authority for land allocation and presiding over resource use issues, as against the authority of the madda elders. Land allocation had created serious grazing problems. Prior to the creation of the PAs, grazing land was generally available to all Borana pastoralists within the same traditional madda as long as the incumbent paid his taxes in the area of new settlement, and obeyed the grazing rules and regulations. In the rainy season, it was possible to move all animals in search of better forage while the safety of grazing areas left behind to replenish could be guaranteed, due to strong mutual respect for traditional boundaries. However, in most cases, the creation of the PAs did not take traditional madda boundaries into consideration, so that different maddas were either wholly blended into one PA or parts of maddas fell into different PAs. Mobility soon became seriously constrained, culminating in disputes as people found it difficult to honour new boundaries in cases where they had effectively lost valuable grazing areas.

The immediate impact of the creation of the PAs as perceived by communities can be summarized into the following key points:

i. Access to grazing areas outside maddas—though in the same madda—is severely restricted
ii. Grazing areas left behind to replenish are no longer secure since they become accessible to in-comers from within the same PA, but from different maddas
iii. Increased disobedience to traditional grazing and water management rules and regulations, aggravated by little formal support for traditional institutions, and a conflict of authority between traditional elders and the relatively young chairmen of the peasant associations.

Besides these immediate outcomes, the creation of the peasant associations went hand-in-hand with settlement restrictions and forced sedentarisation, which further constrained mobility. The PA committee had enough power to evict in-comers not belonging to the PA, and to restrict out-migration to other PAs. With these restrictions, mobility was no longer contingent upon the discretion of local communities about whether or not to honour new boundaries but one which obliged community members to remain within their PA or face the authority of the PA committee. Transhumance paths and traditional routes to water points thus became less and less accessible. Water rights, which used to be determined by elders, became subject to the PA-chairman’s decision.

4.2.3 Special support for cultivation

The post Derg period (1991 onwards) has been perceived to be one of relaxation of rigid settlement policies and trade liberalisation. The central government has given special support for cultivation and endorsement of private claims to cultivated fields. This policy was implemented through the supply of subsidised agricultural inputs such as improved seeds and facilitating private acquisition of land for cultivation with the endorsement of the PA-chairman. This was coupled with a steady increase in crop prices since the early 1990s, while livestock prices have slowly declined (relative crop—livestock price ratio from cross-sectional data in 1998 was 1.03). This led to an increase in cultivation in Sobele, where the trend continued at the expense of community grazing areas. With the approval of the heads of the peasant associations, private grazing land was annexed. Interest in group enclosures dwindled as areas adjacent to cultivated fields provided more secure alternatives for individual enclosures. In Sobele, the outcome of this policy, the ban on wildfires and the partition into peasant associations, led to a gradual privatisation of common pastures under the pretext of cultivation, but actually used for both crop cultivation and grazing. In most cases, however, these were used more for grazing than for cultivation. In Arbate, many attempts were made to induce the
was never permitted by the and elders. While seasonal transhumance to fara areas (outside the community) was permitted, tremendous effort was exerted to maintain the whole community as a common grazing area for all. Both communities conceded that there was no enclosure before the ban on the use of fire for pasture improvement in the mid-1970s, giving evidence of policy-induced changes in local level resource management.

4.2.2 Creation of peasant associations

The communities recalled the creation of the peasant associations (PAs) in the mid-1970s, which were formally created administrative units that coincided with the traditional madda, or merge parts of different madda. The much younger heads of new formal units or the PA-chairmen were vested with much authority for land allocation and presiding over resource use issues, as against the authority of the madda elders. Land allocation had created serious grazing problems. Prior to the creation of the PAs, grazing land was generally available to all Borana pastoralists within the same traditional madda as long as the incumbent paid his taxes in the area of new settlement, and obeyed the grazing rules and regulations. In the rainy season, it was possible to move all animals in search of better forage while the safety of grazing areas left behind to replenish could be guaranteed, due to strong mutual respect for traditional boundaries. However, in most cases, the creation of the PAs did not take traditional madda boundaries into consideration, so that different madda were either wholly blended into one PA or parts of madda fell into different PAs. Mobility soon became seriously constrained, culminating in disputes as people found it difficult to honour new boundaries in cases where they had effectively lost valuable grazing areas.

The immediate impact of the creation of the PAs as perceived by communities can be summarized into the following key points:

i. Access to grazing areas outside ands—though in the same madda—is severely restricted

ii. Grazing areas left behind to replenish are no longer secure since they become accessible to in-comers from within the same new PA, but from different madda

iii. Increased disobedience to traditional grazing and water management rules and regulations, aggravated by little formal support for traditional institutions, and a conflict of authority between traditional elders and the relatively young chairman of the peasant associations.

Besides these immediate outcomes, the creation of the peasant associations went hand-in-hand with settlement restrictions and forced sedentarisation, which further constrained mobility. The PA committee had enough power to evict in-comers not belonging to the PA, and to restrict out-migration to other PAs. With these restrictions, mobility was no longer contingent upon the discretion of local communities about whether or not to honour new boundaries but one which obliged community members to remain within their PA or face the authority of the PA committee. Transhumance paths and traditional routes to water points thus became less and less accessible. Water rights, which used to be determined by elders, became subject to the PA-chairman’s decision.

The communities responded to these sedentarisation processes by intensifying local land use. In Soble, the respondents noted that annexation of rangeland for private grazing was not only the outcome of forage scarcity due to the ban on fires, but also a response to the restriction of mobility. Arable-level enclosures slowly degenerated into encampment-level enclosures, which in turn have now given way to private enclosures. In fact, privatization at the individual level was never possible before the creation of the PAs when land allocation was purely in the hands of the elders. Now PA committees allocate land in consultation with and elders, which creates room for lobbying by interest groups with diverging interests. The elders in Soble recalled that the divergence in interests between those who could afford to invest in the erection of fences and maintenance of private enclosures, and those who lacked the means to do so, culminated in the emergence of enclosures.

In Arbate, grazing areas continued to be managed as ands-level common property, despite the restriction on mobility. Partition attempts only went as far as designating some areas for dry season grazing and others for wet season grazing, contingent upon the approval of the PA-chairman. Both communities reported that water shortages led to the initiation of pond projects. In Soble, most of the projects were initiated by individuals, and supported by the rest of the ands members, and sometimes NGOs. Such initiatives enjoy the unique position of ‘father of the well’ (Aka Hingga), which empowers them to preside over issues related to management and use of the pond. In Arbate, the pond projects were initiated and carried out mainly by the community members as a whole, resulting in more equal access and rights for use among members.

4.2.3 Special support for cultivation

The post-Derg period (1991 onwards) has been perceived to be one of relaxation of rigid settlement policies and trade liberalisation. The central government has given special support for cultivation and endorsement of private claims to cultivated fields. This policy was implemented through the supply of subsidised agricultural inputs such as improved seeds and facilitating private acquisition of land for cultivation with the endorsement of the PA-chairman. This was coupled with a steady increase in crop prices since the early 1990s, while livestock prices have slowly declined (relative crop-livestock price ratio from cross-sectional data in 1998 was 1.03). This led to an increase in cultivation in Soble, where the trend continued at the expense of community grazing areas. With the approval of the heads of the peasant associations, private grazing land was annexed. Interest in group enclosures dwindled as areas adjacent to cultivated fields provided more secure alternatives for individual enclosures. In Soble, the outcome of this policy, the ban on fire and the partition into peasant associations, led to a gradual privatization of common pastures under the pretext of cultivation, but actually used for both crop cultivation and grazing. In most cases, however, these were used more for grazing than for cultivation. In Arbate, many attempts were made to induce the

communities to cultivate but they were reluctant as many believed common grazing was a better option, and everyone was willing to co-operate.

4.2.4. Other policy related events

Other national-level events noted by the communities were related to the forced conscription of physically fit young adult males into the army, which resulted in loss of labour for herding activities. This reduced the possibilities for herdspliting and mobility during periods of forage and water scarcity, which aggravated the impact of droughts and led to large cattle losses. The situation contributed a great deal to the adoption of crops in Soble. It was a period of recurrent raids by the neighbouring Somali tribes during ethnic conflicts especially in Arbabe. Bisected by a secondary road, this community is very vulnerable during periods of conflicts. This threat of attack is also a disincentive to investment in sedentary activities such as enclosures or cultivation. Both communities acknowledged that marketing opportunities have been increasing since the early 1990s, while tax concessions and abandonment of forced sales has created a relief for them. In recent times however, prices have largely been in favour of crops, which may have motivated some people to take up the activity.

4.2.5. Development interventions

Major development interventions in Soble and Arbabe in the last decades include the construction of ponds, livestock vaccination centres and health posts for humans, as well as road networks to facilitate access to the above services and market centres. Most of the roads were constructed in the mid-1970s through ‘food-for-work’ programmes by NGOs and government agencies. The roads have improved the access of pastoralists to market centres. Prior to this period, communities in the area were forced to market their livestock through middlemen at much lower prices. Improvement in medical facilities also contributed to the reported increase in the population of both communities, though in-migration of highlanders could also have contributed. Overall, most of the interventions in the two communities were geared towards the creation of permanent settlements and the resulting intensification of land use, private property rights and market integration.

4.3 Findings in Didakilenisa and Gandulunsa communities

Both Didakilenisa and Gandulunsa have been in their current locations for about 20 years. The area is relatively far from non-Borana ethnic groups and does not experience frequent conflicts. With numerous ponds and reliable wells in the area, water availability does not pose a great problem as would be generally expected in Borana. The madda in which both communities are located (see Annex III) is bisected by the Addis-Moyale main road and is thus well linked to market centres. One of the three state-owned ranches on the Borana rangelands—the Dambelawach Ranch—is also located in this madda. The communities have also been among the direct beneficiaries of development activities by CARE, and applied research activities by the International Livestock Centre for Africa (ILCA) in the 1980s. The two communities seem to be on similar pathways to land use intensification, though they are currently found at different stages of development. The causes of this trend, as in the latter case, are explored in detail using the timeline presented in Figure 4.

4.3.1 Policy-induced changes

As in the other communities involved in this study, the ban on wildfire in Didakilenisa and Gandulunsa resulted in bush encroachment, tick-borne diseases and dangers from wild animals and snakes. Browsers (goats and camels) were also adopted in both communities to cope with the emerging bush. The extent of diversification was limited since camels are of little use due to relatively easy market accessibility. Changes in land use and property rights over grazing resources were very minimal. Except for the spontaneous adoption of crops by some families in Gandulunsa and group enclosures in both communities few major changes were observed.

The creation of the PAs adda-boundaries. However, traditional arrangements that permitted grazing across madda boundaries were disrupted, particularly in Gandulunsa. The restriction of members in one peasant association and subsequent congestion, provoked problems of overgrazing which led to low livestock productivity. This prompted some people to take up cultivation in Gandulunsa. In Didakilenisa, traditional movements to common warm areas were still possible and thus there was no incentive to engage in partitioning or cultivation on a large scale.

On the other hand, the formation of PAs made the imposition of many forms of taxation possible, while forced conscription into the national army became relatively easy. The consequent loss of labour force, coupled with high taxes, low livestock productivity and poor market conditions created great difficulties that led people to cultivation (and land annexation near cultivated fields) in many communities including Gandulunsa. Crops are absent in Didakilenisa, apart from small gardens that started a couple of years ago. Members in this community claimed not to be cultivating because they do not want to put their animals at stake in the sense of being tied down to a single place with segregated pastures. The members of Didakilenisa claimed to be determined to conserve their communal grazing areas to avoid what they called ‘the negative influence’ of cultivation, which divides the interest of the community members. Proximity to the market centre at Dubdub also facilitates the purchase of grains when needed or for storage when prices are relatively low. Moreover, the traditional herd-splitting practice that requires mobility is still very valuable in this community.
communities to cultivate but they were reluctant as many believed common grazing was a better option, and everyone was willing to co-operate.

4.2.4. Other policy related events

Other national-level events noted by the communities were related to the forced conscription of physically fit young adult males into the army, which resulted in loss of labour for herding activities. This reduced the possibilities for herd splitting and mobility during periods of forage and water scarcity, which aggravated the impact of droughts and led to large cattle losses. The situation contributed a great deal to the adoption of crops in Soble. It was a period of recurrent raids by the neighbouring Somali tribes during ethnic conflicts especially in Arbate. Bisected by a secondary road, this community is very vulnerable during periods of conflicts. This threat of attack is also a disincentive to investment in sedentary activities such as enclosures or cultivation. Both communities acknowledged that marketing opportunities have been increasing since the early 1990s, while tax concessions and abandonment of forced sales has created a relief for them. In recent times however, prices have largely been in favour of crops, which may have motivated some people to take up the activity.

4.2.5. Development interventions

Major development interventions in Soble and Arbate in the last decades include the construction of ponds, livestock vaccination centres and health posts for humans, as well as road networks to facilitate access to the above services and market centres. Most of the roads were constructed in the mid-1970s through ‘food-for-work’ programmes by NGOs and government agencies. The roads have improved the access of pastoralists to market centres. Prior to this period, communities in the area were forced to market their livestock through middlemen at much lower prices. Improvement in medical facilities also contributed to the reported increase in the population of both communities, though in-migration of highlanders could also have contributed. Overall, most of the interventions in the two communities were geared towards the creation of permanent settlements and the resulting intensification of land use, private property rights and market integration.

4.3 Findings in Didakilenса and Gandulensa communities

Both Didakilenса and Gandulensa have been in their current locations for about 20 years. The area is relatively far from non-Borana ethnic groups and does not experience frequent conflicts. With numerous ponds and reliable wells in the area, water availability does not pose a great problem as would be generally expected in Borana. The maida in which both communities are located (see Annex III) is bisected by the Addis-Moyale main road and is thus well linked to market centres. One of the three state-owned ranches on the Borana rangelands—the Dambelawach Ranch—is also located in this maida. The communities have also been among the direct beneficiaries of development activities by CARE, and applied research activities by the International Livestock Centre for Africa (ILCA) in the 1980s. The two communities seem to be on similar pathways to land use intensification, though they are currently found at different stages of development. The causes of this trend, as in the latter case, are explored in detail using the timeline presented in Figure 4.

4.3.1 Policy-induced changes

As in the other communities involved in this study, the ban on wildfire in Didakilenса and Gandulensa resulted in bush encroachment, tick-borne diseases and dangers from wild animals and snakes. Browsers (goats and camels) were also adopted in both communities to cope with the emerging bush. The extent of diversification was limited since camels are of little use due to relatively easy market accessibility. Changes in land use and property rights over grazing resources were very minimal. Except for the spontaneous adoption of crops by some families in Gandulensa and group enclosures in both communities few major changes were observed.

The creation of the PAs adiea-boundaries. However, traditional arrangements that permitted grazing across maida boundaries were disrupted, particularly in Gandulensa. The restriction of members in one peasant association and subsequent congestion, provoked problems of overgrazing which led to low livestock productivity. This prompted some people to take up cultivation in Gandulensa. In Didakilenса, traditional movements to common areas were still possible and thus there was no incentive to engage in partitioning or cultivation on a large scale.

On the other hand, the formation of PAs made the imposition of many forms of taxation possible, while forced conscription into the national army became relatively easy. The consequent loss of labour force, coupled with high taxes, low livestock productivity and poor market conditions created great difficulties that led people to cultivation (and land annexation near cultivated fields) in many communities including Gandulensa. Crops are absent in Didakilenса, apart from small gardens that started a couple of years ago. Members in this community claimed not to be cultivating because they do not want to put their animals at stake in the sense of being tied down to a single place with segregated pastures. The members of Didakilenса claimed to be determined to conserve their communal grazing areas to avoid what they called the 'negative influence' of cultivation, which divides the interest of the community members. Proximity to the market centre at Dubuluk also facilitates the purchase of grains when needed or for storage when prices are relatively low. Moreover, the traditional herd-splitting practice that requires mobility is still very valuable in this community.
Both communities reported that there was no cultivation or rangeland enclosure prior to the ban on wildfire and the formation of peasant associations. After these interventions, group enclosures soon emerged in Didikilenas, which currently constitute 25% of the total land area (Annex II), but used by all members of the community only for calves. In Gundilenas, enclosures appeared much later (around 1978/79) but only by sub-groups of individuals. Thus, the clearest divergence between the two communities is the fact that while Gundilenas took up cultivation and (annexation of adjacent fields) and relied less on enclosures, Didikilenas relied more on enclosures as a means of securing forage.

The enclosed area for cultivation is acquired through the permission of the PA-chairman who encourage the activity and who are vested with much authority by the central administration to allocate land for cultivation. There were claims of households requiring parcels under the pretext of cultivation but were actually using it mainly for grazing. The acquisition of privatised grazing areas in these communities (which this study could not clearly distinguish from areas actually cultivated) is thus a direct concomitant of cultivation support and the creation of the peasant associations, through the endorsing action of the PA-chairman. Once a plot for cultivation is acquired, large areas surrounding it can easily be fenced-off and used for the grazing of draft animals and calves.

Overall, traditional rules are largely functional in these communities especially in Didikilenas. The two communities (unusually) consist of one encampment each, and population density is comparatively low (Annex III) so that the management of group enclosures is relatively easy. In general, the enclosures are intended to deprive outsiders from grazing within the community. The virtual absence of cultivation especially in Didikilenas makes the enforcement of rules and regulations much easier, as members more or less share the same interests of pastoral production.

4.3.2 Development interventions

The development of road networks creating a link to the market centre in Dubulik (about 13 km away) facilitated marketing activities. Most of the roads were constructed in the last decade by government agencies and NGOs. Before the establishment of the Dubulik market in 1992, trekking to markets used to last for several days. Livestock sales were difficult, besides the compulsory sales to the central administration at minimal prices. The emergence of market centres positively contributed to better livestock prices, though livestock prices lagged behind crop prices. The Dubulik market also offers a good opportunity for the purchase of cereals, which gives them more incentive to sell livestock and buy grains.

IICA and CARE also introduced haymaking in the area during the late 1980s. This improved the feed situation and reduced mobility. The haymaking activities and the construction of pozas laid a good foundation for sedentarisation. With reduced mobility, some took up to cultivation while others intensified rangeland enclosure for private grazing. The increased aspiration for private land for cultivation was also attributed to the rising crop prices since the early 1990s. Those who could afford to buy and store cereals did so when prices were favourable. The effects of these interventions also coincided with increased human population due to improved health facilities and weakening traditions, rules and customs.

4.4 Drought events

As the level and distribution of rainfall varies widely across the Borana rangelands, so does the impact of droughts and the response mechanisms developed by various communities. For the communities under consideration, the exploration of drought events for the past three decades reveals an average interval of four to six years between successive droughts. With data that were obtained through narration and references to the oral traditional calendar, these average intervals make a good approximation of drought probabilities suggested by previous studies (Copsock 1994; Puttenmeuch 1997). For the period covered in this study, a summary of the drought events recalled by the respondents is briefly reviewed (Table 2). The rangelands experience a biennial rainfall distribution and most of the droughts are driven by deficient precipitation during the long rainy season (April-June) or failure of the short rains (September-October). The analysis is based on the retrospective accounts of the respondents, which include impacts on livestock and human populations as well as mechanisms of adjustments of the four communities.

The impacts of droughts vary across sites and communities, and are often exacerbated by various diseases. Loss of animals through diseases increases the severity of drought on human population as it renders the carcasses inedible at a time when milk productivity is at its lowest and grain prices at their highest. The resulting situation often becomes catastrophic to the point that external relief aid becomes the only rescue. At such stages, camels become very important because of their relatively good milk productivity under arid conditions, and because of their transportation role or in facilitating mobility.

Sudden outbreaks of conflicts and wars also aggravate the impact of droughts. For instance, the impacts of the drought of the early 1970s were worsened by the Ehtio-Somalia conflicts. That period also coincided with the change of government in Ethiopia, which was characterised by ethnic conflicts that resulted from the deterioration of security nationwide. While the Ehtio-Somalia war was in progress, a conflict between the Borana and the neighbouring Guji created insecurity all across the southern rangelands so that traditional herd splitting and mobility were hardly possible. A similar experience also occurred in 1991/92, when the transition of power from the Derg regime to the current government resulted in deteriorating security and ethnic conflicts, while severe drought took its toll on pastoralists and their livestock. This clearly shows that the extent and severity of droughts on both humans and livestock is not only due to lack of endogenous responses with mitigation strategies, but also due to exogenous factors such as ethnic conflicts and wars.

9. The Borana culture has provisions for determining marital age, sexual behavior and conception age as traditional methods of controlling human population vis-a-vis the grazing resource base. With increased integration into the national economy, most of these customs die away.
Both communities reported that there was no cultivation or rangeland enclosure prior to the ban on wildlife and the formation of peasant associations. After these interventions, group enclosures soon emerged in Dikdelena, which currently constitute 25% of the total land area (Annex II), but used by all members of the enda-community only for calves. In Gandulensa, enclosures appeared much later (around 1978/79) but only by subgroups of individuals. Thus, the clearest divergence between the two communities is the fact that while Gandulensa took up cultivation (and annexation of adjacent fields) and relied less on enclosures, Dikdelena relied more on enclosures as a means of securing forage.

The enclosed area for cultivation is acquired through the permission of the PACHAIRMAN who encourage the activity and who are vested with much authority by the central administration to allocate land for cultivation. There were claims of households requiring parcels under the pretext of cultivation but were actually using it mainly for grazing. The acquisition of privatized grazing areas in these communities (which this study could not clearly distinguish from areas actually cultivated) is thus a direct concomitant of cultivation support and the creation of the peasant associations, through the collective action of the Peasant Chairman. Once a plot for cultivation is acquired, large areas surrounding it can easily be fenced-off and used for the grazing of draft animals and calves.

Overall, traditional rules are largely functional in these communities especially in Dikdelena. The two communities (unusually) consist of one encampment each, and population density is comparatively low (Annex III) so that the management of group enclosures is relatively easy. In general, the enclosures are intended to appease outsiders from grazing within the community. The virtual absence of cultivation especially in Dikdelena makes the enforcement of rules and regulations much easier, as members more or less share the same interests of pastoral production.

4.3.2 Development interventions

The development of road networks creating a link to the market centre in Dubuluk (about 13 km away) facilitated marketing activities. Most of the roads were constructed in the last decade by government agencies and NCOOs. Before the establishment of the Dubuluk market in 1992, trekking to markets used to last for several days. Livestock sales were difficult, besides the compulsory sales to the central administration at minimal prices. The emergence of market centres positively contributed to better livestock prices, though livestock prices lagged behind crop prices. The Dubuluk market also offers a good opportunity for the purchase of cereals, which gives them more incentive to sell livestock and buy grains.

ILCA and CARE also introduced haymaking in the area during the late 1980s. This improved the feed situation and reduced mobility. The haymaking activities and the construction of ponds laid a good foundation for sedimentation. With reduced mobility, some took up to cultivation while others intensified rangeland enclosure for private grazing. The increased aspiration for private land for cultivation was also attributed to the rising crop prices since the early 1990s. Those who could afford to buy and store cereals did so when prices were favourable. The effects of these interventions also coincided with increased human population due to improved health facilities and weakening traditions, rules and customs.

4.4 Drought events

As the level and distribution of rainfall varies widely across the Borana rangelands, so does the impact of droughts and the response mechanisms developed by various communities. For the communities under consideration, the exploration of drought events for the past three decades reveals an average interval of four to six years between successive droughts. With data that were obtained through interviews and references to the official calendar, these average intervals make a good approximation of drought probabilities suggested by previous studies (Coppock 1994; Puttenmeijer 1997). For the period covered in this study, a summary of the drought events recalled by the respondents is briefly reviewed (Table 2). The rangelands experience a bimodal rainfall distribution and most of the droughts are driven by deficient precipitation during the long rainy season (April-June) or failure of the short rains (September-October). The analysis is based on the retrospective accounts of the respondents, which include impacts on livestock and human populations as well as mechanisms of adjustments of the four communities.

The impacts of drought vary across sites and communities, and are often exacerbated by various diseases. Loss of animals through diseases increases the severity of droughts on human population as it renders the carcass inedible at a time when milk productivity is at its lowest and grain prices at their highest. The resulting situation often becomes catastrophic to the point that external relief aid becomes the only rescue. At such stages, camels become very important because of their relatively good milk productivity under arid conditions, and because of their transportation role or in facilitating mobility.

Sudden outbreaks of conflicts and wars also aggravate the impact of droughts. For instance, the impacts of the drought of the early 1970s were worsened by the Ethio-Somalia conflicts. That period also coincided with the change of government in Ethiopia, which was characterised by ethnic conflicts that resulted from the deterioration of security nationwide. While the Ethio-Somalia war was in progress, a conflict between the Borana and the neighbouring Guji created insecurity all across the southern rangelands so that traditional herd splitting and mobility were hardly possible. A similar experience also occurred in 1991/92, when the transition of power from the Derg regime to the current government resulted in deteriorating security and ethnic conflicts, while severe drought took its toll on pastoralists and their livestock. This clearly shows that the extent and severity of droughts on both humans and livestock is not only due to lack of endogenous responses with mitigation strategies, but also due to exogenous factors such as ethnic conflicts and wars.

9. The Borana culture has provisions for determining marital age, sexual behavior and conception age as traditional methods of controlling human population vis-à-vis the grazing resource base. With increased integration into the national economy, most of these customs die away.
<table>
<thead>
<tr>
<th>Date/event</th>
<th>Consequences and responses</th>
</tr>
</thead>
<tbody>
<tr>
<td>1971/72, Long rains absent</td>
<td>- Forage and water scarcity - Animal deaths due to lack of forage</td>
</tr>
<tr>
<td>Short rains failed</td>
<td>- Forage and water scarcity - Animal deaths due to lack of forage</td>
</tr>
<tr>
<td>- Forage and water scarcity - Animal deaths due to lack of forage</td>
<td>- Forage and water scarcity - Animal deaths due to lack of forage</td>
</tr>
<tr>
<td>1974/75, Long rains failed</td>
<td>- Forage and water problems - Animal deaths due to lack of forage</td>
</tr>
<tr>
<td>Short rains failed, Excessive by ethnic conflict</td>
<td>- Forage and water problems - Animal deaths due to lack of forage</td>
</tr>
<tr>
<td>1977/78, Complete failure of the short rains</td>
<td>- Forage and water problems - Animal deaths due to lack of forage</td>
</tr>
<tr>
<td>Long rains lasted only a few weeks</td>
<td>- Forage and water problems - Animal deaths due to lack of forage</td>
</tr>
<tr>
<td>1980/81, Excessive rains (long rainy season)</td>
<td>- Forage and water availability - Livestock recovery - Malaria outbreak; human deaths</td>
</tr>
<tr>
<td>1984/85, Long rains erratic and insufficient, Short rains failed</td>
<td>- Forage and water availability - Livestock recovery - Malaria outbreak; human deaths</td>
</tr>
<tr>
<td>1991/92, Long rains erratic, unevenly distributed and virtually failed, Drug regime fails, conditions deteriorate.</td>
<td>- Forage and water availability - Livestock recovery - Malaria outbreak; human deaths</td>
</tr>
<tr>
<td>1993, Too much rain</td>
<td>- Forage and water availability - Livestock recovery - Malaria outbreak; human deaths</td>
</tr>
<tr>
<td>1995/96, Long rains too late, Short rains failed</td>
<td>- Forage and water availability - Livestock recovery - Malaria outbreak; human deaths</td>
</tr>
</tbody>
</table>

The initial response to droughts by most communities is herd splitting, where dry herds (non-lactating cattle and camels) are separated from the rest of the herd and sent with a few family members to fallback areas with good forage. The concentration of large herds around deep wells is regulated by strict permission of access, and by giving first preference to local inhabitants of the peasant association or maddi first. Some of the communities, however, asserted that mobility is sometimes risky and could result in massive loss of livestock when the impact of the droughts is pervasive. Herd dispersal into fera areas is usually preferred, with transportation of water, trekking animals over long distances to deep wells, and feeding of animals by cut-and-carry. Haymaking is still not very common and is largely limited to communities within CARE's operational areas.

Table 2. A diary of droughts and excessive rains in the Horn of Africa (1971-98).

<table>
<thead>
<tr>
<th>Date/event</th>
<th>Consequences and responses</th>
</tr>
</thead>
<tbody>
<tr>
<td>1971/72: Long rains failed</td>
<td>Soluble and absorbable materials decrease</td>
</tr>
<tr>
<td>1974/75: Short rains failed</td>
<td>Dikdiklensa and undikdulensa</td>
</tr>
<tr>
<td>1979/80: Complete failure of the short rains</td>
<td>Excessive rains (long rainy season)</td>
</tr>
<tr>
<td>1980/81: Complete failure of the short rains</td>
<td>Long rains erratic and insufficient</td>
</tr>
<tr>
<td>1991/92: Long rains erratic and insufficient</td>
<td>Too much rain</td>
</tr>
<tr>
<td>1995/96: Long rains too heavy</td>
<td>Short rains failed</td>
</tr>
</tbody>
</table>

The initial response to droughts by most communities is herd splitting, where dry herds (non-lactating cattle and camels) are separated from the rest of the herd and sent with a few family members to fall-back areas with good forage. The concentration of large herds around deep wells is regulated by strict permission of access, and by giving first preference to local inhabitants of the peasant association or madda. Some of the communities, however, asserted that mobility is sometimes risky and could result in massive loss of livestock when the impact of the droughts is pervasive. Herd dispersal into fair areas is usually preferred, with transportation of water, trekking animals over long distances to deep wells, and feeding of animals by cut-and-carry. Haymaking is still not very common and is largely limited to communities within CARE’s operational areas.
5 Development pathways and institutional change in Borana

The discussion presented so far indicates the diverging nature of strategies developed by communities to adapt to changes induced by exogenous forces. Despite exposure to similar policies, interventions and natural conditions, Soble and Arbate are currently found on different development pathways. Soble is diversifying into crops and private rights to rangelands while pastures in Arbate are largely maintained as common property accessible to all community members. Didakileiffs and Ganduliffs seem to be on similar development pathways characterised by relatively large common grazing areas but with significantly different levels of cultivation and enclosures for grazing (see Annex III).

Overall, the trends represented by these communities depict different development pathways in response to various forces. Soble is representative of communities that are strictly on a privatisation pathway with increased reliance on crops. The responses of the other communities depict different pathways that range between regulated common property, which characterises traditional African pastoralism, and full-scale privatisation with diversification into crops, rangeland enclosures and the establishment of private property rights. As depicted by previous studies in Borana, various trends of property rights and land use are currently observable, which are largely explained by population, environmental factors, social capital and market variables, while the resulting grazing pressure creates an incentive for the acquisition of private rights (Swallow and Kamara 1999, Kamara 2001). While supporting the above view, this paper argues that the conflict of authority between traditional elders and PA chairmen has weakened traditional authority and further exacerbated the process. Natural population increase is attributed partly to improving health facilities, but largely to weakening traditional rules that regulate marital age etc. Valuable grazing areas lost to bush encroachment (ban on bushfire) combined with increasing population also increases pressure on the rangelands. The pressure creates incentive for private rights, which are facilitated and endorsed by the heads of the peasant associations. Community level responses differ greatly but are largely driven by the activities of interest groups, resulting in different development pathways.

5.1 Conceptualising land use and property rights in Borana

The results of the in-depth analysis enhance a detailed conceptualisation of the emerging development pathways on the Borana rangelands with regard to the status of traditional land use patterns and property regimes. The trends are presented in a conceptual diagram (Figure 5) that depicts the various institutional arrangements (wama, fora, enclosures) presented earlier.

As indicated in Figure 5, the ordinate represents the proportion of land area under different activities, while the abscissa represents different land uses and property rights.

![Graph of land use and property rights in Borana](image)
5 Development pathways and institutional change in Borana

The discussion presented so far indicates the diverging nature of strategies developed by communities to adapt to changes induced by exogenous forces. Despite exposure to similar policies, interventions and natural conditions, Soble and Arbate are currently found on different development pathways. Soble is diversifying into crops and private rights to rangelands while pastures in Arbate are largely maintained as common property accessible to all community members. Didakkenk and Candukken seem to be on similar development pathways characterised by relatively large common grazing areas but with significantly different levels of cultivation and enclosures for grazing (see Annex III).

Overall, the trends represented by these communities depict different development pathways in response to various forces. Soble is representative of communities that are strictly on a privatisation pathway with increased reliance on crops. The responses of the other communities depict different pathways that range between regulated common property, which characterises traditional African pastoralism, and fullscale privatisation with diversification into crops, rangeland enclosures and the establishment of private property rights. As depicted by previous studies in Borana, various trends of property rights and land use are currently observable, which are largely explained by population, environmental factors, social capital and market variables. While the resulting grazing pressure creates an incentive for the acquisition of private rights (Swallow and Kamara 1999, Kamara 2001). While supporting the above view, this paper argues that the conflict of authority between traditional elders and PA chairmen has weakened traditional authority and further exacerbated the process. Natural population increase is attributed partly to improving health facilities, but largely to weakening traditional rules that regulate marital age etc. Valuable grazing areas lost to bush encroachment (ban on bushfire) combined with increasing population also increases pressure on the rangelands. The pressure creates incentive for private rights, which are facilitated and endorsed by the heads of the peasant associations. Community level responses differ greatly but are largely driven by the activities of interest groups, resulting in different development pathways.

5.1 Conceptualising land use and property rights in Borana

The results of the in-depth analysis enhance a detailed conceptualization of the emerging development pathways on the Borana rangelands with regard to the status of traditional land use patterns and property regimes. The trends are presented in a conceptual diagram (Figure 5) that depicts the various institutional arrangements (waama, farra, enclosures) presented earlier.

As indicated in Figure 5, the ordinate represents the proportion of land area under different activities, while the abscissa represents different land uses and property rights.

![Figure 5: Model of property rights and land use change in Borana.](image)

- **Land use type, property right (c = common, p = private):**
 - U1 = Large commons, some grazing, with some farma and no private property right.
 - U2 = Large commons, virtually no farma, some grazing enclosures for all ama members; no private rights, no cultivation.
 - U3 = No farma, very large commons; a considerable number of enclaves, enclosures, and grazing areas for all ama members. No private properties.
 - U4 = No farma, very large commons, large proportion of enclosures (enclaves, e.g., cultivation and grazing areas around cultivated fields.
 - U5 = No farma, relatively small commons, relatively small commons, small enclosures around cultivated areas.
 - U6, U7 = Similar to U5 but no common property grazing areas (no farma, no farma), all grazing land is enclosed either for all ama members, for subgroups of individuals, or for individuals with some cultivation.

The land areas held under different land use types and property rights are denoted by U1 to U7, and range exclusively between common range management and trends towards privatization. Communities occurring around U1 are pastoralists relying exclusively on communal range management and mobility. The entire community is kept at grazing areas (C2) for all ama members, with some farma areas (C1) open to all other Borana pastoralists regardless of origin. These are relatively sparsely populated communities in locations much further away from market centres where mobility is relied upon as the traditional risk management strategy. Though very few of such communities are currently found in the area, U1 was the predominant land use type.
before the advent of the various policy changes and interventions in the 1970s, which gradually changed through U2, U3, ..., to U7.

Communities found around U2 rely almost exclusively on communal warm grazing (C2) with traces of enclosures in strategic areas while the rest is used as common pasture. This form of land use is more common pasture (C2), but also on enclosures at the area level for grazing by all members, while minor cultivation is carried out in naturally suitable areas such as bottoms of valleys and water swills. The scale of cultivation is very minimal and crops are not used as a pretext for annexing pastures. These land use type is largely representative of the area as it is found in about 65% of the sample communities. Communities at U4 have a stronger reliance on various forms of community level enclosures (C3) than on communal warm grazing (C2). Cultivation also forms a significant component of the production portfolio, with adjacent areas enclosed for private grazing. Private enclosure of rangelands in such areas is only possible around cultivated fields. Land use types from U5 to U7 emerged only in the 1990s but are becoming increasingly important. In these communities, the reliance on communal grazing (C2) has gradually given way to restricted grazing by sub-groups, and more reliance on crops and private property rights to grazing areas without the pretext of cultivation.

The shapes of curves w and x depict the tendency of better areas (C1) slowly getting restricted to warm grazing areas (C2), and warm areas gradually getting converted into community level enclosures of various types (C3). The curve w eventually becomes a horizontal straight line to indicate that cultivation cannot be extended beyond a certain natural limit; given the marginal and semi-arid nature of the rangelands. Once the high potential areas get appropriated into crops, benefit-cost ratios and efficiency perspectives will halt the expansion of cultivation, giving rise to other forms of intensification, possibly through increased input use. Similarly, curve x, which demarcates the expansion of private enclosures for grazing becomes a horizontal straight line depicting the fact that investments in rangeland privatization will only yield equal returns until all the relatively high potential areas are enclosed. Once such areas are exhausted, joint maximization under different forms of managed common property arrangement (C3), and community level open grazing (C2) are likely to continue, to facilitate mobility and pulling across pastures of varying primary production potential. As already suggested by the descriptive statistics (Figure 3), the distribution of the 40 communities peak around U3 and U4, with large warm areas (C2), some group level enclosures (C3) and some cultivation. Only about 4% of the sample communities fall between U5 and U7, where nearly all the pastures are enclosed, while little or no warm grazing (C2) and no farm (C1).

5.2 Pathways to property rights and land use change

At the aggregate level, the various trends of land use and property rights broadly depict three emerging pathways to livestock development (P1, P2, and P3):

- Maintenance of common property grazing as traditional pastoralists with virtually no cultivation, little or no enclosures, with browsing animals and small ruminants for mobility and adaptation to varying forage conditions—indicated by P3, and prevalent during the pre-1970 phase.
- Rangeland privatization with expanding crop cultivation which also facilitates the acquisition of privatized grazing areas around cultivated fields, with numerous enclosures for grazing by subgroups at the area level or encampment levels, and little or no restricted communal grazing areas; private rights to rangeland only possible with the pretext of cultivation and annexation around cultivated fields—indicated by P2.
- Expanding rangeland enclosures for grazing by individual households and groups of households, with diversification into small ruminants and limited cultivation. Private enclosures are acquired with or without the pretext of cultivation—indicated by P1.

These pathways can be described as pastoral livestock development pathways with common property grazing and no desire for crops or privatized grazing areas. P3 livestock production with great reliance on crops and privatized grazing areas. P2 livestock production with incentives to privatized grazing or private rights to pastures without much reliance on crops.

The privatization pathways to livestock development (P1 and P2) are clearly endogenous adaptations to a variety of incentives and exogenous pressure on the rangelands. This paper shows that the changes in Borana are largely motivated by the special support for cultivation and sedentarisation programmes initiated in the 1980s, which were believed to be superior to traditional pastoralism pursued in P3. However, the sustainability of a sedentarised livestock production system on semi-arid African rangelands remains questionable, while opportunistic grazing, based on mobility and flexible boundaries is frequently recommended (Hogg 1997; Namis-Fuller 1999; Scoones 1999). Therefore, the emerging privatization pathway should be envisaged more as a spontaneous and temporary response that may not be sustainable in the long run. While spontaneous cultivation and opportunistic enclosures for grazing are actually suited to some parts of the area, the variable and unpredictable nature of the rangelands require flexible response mechanisms for long-term sustainability. These changes may influence more consistent with the communal range management pathway (P1) which is inherently based on opportunistic grazing, less reliance on crops and seasonal adjustments in grazing rules to cope with feed and water availability.

5.3 Conclusions

The findings of the paper largely confirm to the propositions of the 2nd Section of the paper about population and market-induced changes in Borana. These propositions are derived from the fact that these variables induce pressure on the rangelands and hence create incentives for individuals to take to crops or acquire private grazing land, and
before the advent of the various policy changes and interventions in the 1970s, which gradually changed through U2, U3, ... to U7. Communities found around U2 rely almost exclusively on communal xema grazing (C2) with traces of enclosures in strategic areas while the rest is used as common pastures. This form of land use and grazing arrangements were dominant in the late 1970s and early 1980s as responses to the early change on the rangelands. U3 depicts communities relying highly on common pasture (C2), but also on enclosures at the amba-level for grazing by all members, while minor cultivation is carried out in naturally suitable areas such as bottoms of valleys and water swills. The scale of cultivation is very minimal and crops are not used as a pretext for annexing pastures. These land use type is largely representative of the area as it is found in about 65% of the sample communities. Communities at U4 have a strong reliance on various forms of community level enclosures (C3) than on communal xema grazing (C2). Cultivation also forms a significant component of the production portfolio, with adjacent areas enclosed for private grazing. Private enclosure of rangelands in such an area is only possible around cultivated fields. Land use types from U5 to U7 emerged only in the 1990s but are becoming increasingly important. In these communities, the reliance on communal grazing (C2) gradually gives way to restricted grazing by sub-groups, and strong reliance on crops and private property rights to grazing areas without the pretexts of cultivation. The shapes of curves w and x depict the tendency of fora areas (C1) slowly getting restricted to xema grazing areas (C2), and xema areas gradually getting converted into community level enclosures of various types (C3). The curve y eventually becomes a horizontal straight line to indicate that cultivation cannot be extended beyond a certain natural limit, given the marginal and semi-arid nature of the rangelands. Once the high potential areas get appropriated into crops, benefit-cost ratios and efficiency perspectives will halt the expansion of cultivation, giving rise to other forms of intensification, possibly through increased input use. Similarly, curve z, which demarcates the expansion of private enclosures for grazing becomes a horizontal straight line depicting the fact that investments in rangeland privatisation will only yield equal returns until all the relatively high potential areas are enclosed. Once such areas are exhausted, joint maximisation under different forms of arable common property arrangement (C3), and community level open grazing (C2) are likely to continue, to facilitate mobility and pulling across pastures of varying primary production potential. As already suggested by the descriptive statistics (Figure 3), the distribution of the 40 communities peak around U3 and U4, with large xema areas (C2), some group level enclosures (C3) and some cultivation. Only about 4% of the sample communities fall between U5 and U7, where nearly all the pastures are enclosed, with little or no xema (C2) and no fora (C1).

5.2 Pathways to property rights and land use change
At the aggregate level, the various trends of land use and property rights broadly depict three emerging pathways to livestock development (P1, P2 and P3):

- Maintenance of common property grazing as traditional pastoralists with virtually no cultivation, little or no enclosures, with browsing animals and small ruminants for mobility and adaptation to varying forage conditions—indicated by P1, and prevalent during the pre-1970 phase.
- Rangeland privatisation with expanding crop cultivation which also facilitates the acquisition of privatised grazing areas around cultivated fields, with numerous enclosures for grazing by sub-groups at the amba or encampment levels, and little or no unrestricted communal grazing areas, private rights to rangeland only possible with the pretext of cultivation and annexation around cultivated fields—indicated by P2.
- Expanding rangeland enclosures for grazing by individual households and groups of households, with diversification into small ruminants and little cultivation, private enclosures are acquired with or without the pretext of cultivation—indicated by P3. These three pathways can be described as pastoral livestock development pathways with common property grazing and no desire for crops or privatised grazing areas (P1), livestock production with great reliance on crops and private grazing around cultivated fields (P2), and livestock production with incentives to privatised grazing or private rights to pastures without much reliance on crops (P3).

The privatisation pathways to livestock development (P1 and P3) are clearly endogenous adaptations to a variety of incentives and exogenous pressure on the rangelands. This paper shows that the changes in Borana are largely motivated by the special support for cultivation and sedentarisation programmes initiated in the 1980s, which were believed to be superior to traditional pastoralism pursued in P1. However, the sustainability of a sedentarised livestock production system on semi-arid African rangelands remains questionable, while opportunistic grazing, based on mobility and flexible boundaries is frequently recommended (Hogg 1997; Niamis-Fuller 1999; Scoones 1999). Therefore, the emerging privatisation pathway should be envisaged more as a spontaneous and temporary response that may not be sustainable in the long run. While spontaneous cultivation and opportunistic enclosures for grazing are actually suited to some parts of the area, the variable and unpredictable nature of the rangelands require flexible response mechanisms for long-term sustainability. These may include flexible institutions with transient rules and regulations that adjust to seasonal forage and water availability, and flexible property boundaries that guarantee pooling across rangelands of varying characteristics. These attributes are very consistent with the communal rangeland management pathway (P0) which is inherently based on opportunistic grazing, less reliance on crops and seasonal adjustments in grazing rules to cope with feed and water availability.

5.3 Conclusions
The findings of the paper largely conform to the propositions of the 2nd Section of the paper about population and market-induced changes in Borana. These propositions are derived from the fact that these variables induce pressure on the rangelands and hence create incentives for individuals to take to crops or acquire private grazing land, and
thereby diminish negative externalities generated on the commons by overstocking. While acknowledging these facts, the in-depth analysis further establishes that various forms of national level policies and development interventions have equally contributed to the observed changes.

First, the advent of cultivation in the overwhelming majority of the communities coincides with the creation of the peasant associations, which formally endorse private rights to croplands, as opposed to the now weakened authority of the traditional elders. So whatever the incentives generated by internal socio-economic, demographic and market variables, the previous strong system of communal resource management may have been responsible for the virtual absence of cultivation in Borana before the creation of the peasant associations.

Second, the emerging pressure on the rangelands is not only a function of demographic and socioeconomic variables, but also environmental variables such as bush encroachment. The paper reveals that the current trend of bush encroachment is a direct result of a policy intervention in mid-1970s. So the resulting high livestock densities and land use changes should be seen more as an outcome from an interaction between environmental, socio-economic and policy variables, where policy variables are largely envisaged as co-actors or facilitators of institutional change. This conforms to the key hypothesis of the paper about the possible role of policy variables in driving changes in land use and property rights in Borana.

Third, the roles of development interventions and droughts are also worth reiterating. The development of road networks and market centres in the last decades increased the interaction of pastoralists and neighboring agropastoral ethnic groups. This interaction could be associated with incentives such as lower transportation and learning costs for the adoption of crops. The impact of droughts should also be recognised in the sense that many communities reported the drought prone nature of the area to be the primary reason for staying together as commons. That is, the maintenance of common property grazing arrangements and the failure of some communities to adopt crops are motivated by a desire to guarantee mobility at all times. However, without an in-depth analysis on specific drought cycles, little can be said about the long-term impact of droughts on livestock and rangeland dynamics, which this study can only recommend as a task still ahead.

5.4 Policy implications

The implications of these findings are two fold. First, development interventions may specifically have to pay attention to their impacts on traditional values that regulate both human and livestock populations. Second, the possible impacts of development interventions on equity, which could be affecting community level cooperation in managing stock levels, needs to be examined. More precisely, drought management programmes need to be seriously assessed in terms of their impact on livestock numbers and land allocation. Programmes that alleviate losses during drought will reduce output variability, and may lead both to high stock levels and private land over and above the social optimum, both because of moral hazard problems and because of higher risk of externalities being generated on the common pastures.

It is also observed that demographic change in Borana is related to endogenous factors such as weakening of traditional practices on marital age etc. Gradual decrease away of traditional values is directly related to the devolution of authority from elders due to the presence of the formal heads of the peasant associations. Therefore strengthening the traditional authority to help implement such rules, through a minimised influence of formal authorities could be a milestone towards restoring stability and sustainability in the Borana pastoral system. While acknowledging that not all traditional rules may have a positive effect on resource management, it is desirable to recognise and strengthen those that positively affect resource use among local communities.

Among environmental variables, the paper recognises that the considerable loss of pastures to bush encroachment creates pressure on the rests of the rangelands and is thus a crucial determinant of stock densities on the remaining resource base, with restricted mobility and subsequent congestion. Although diversification into browsing animals is an evident adaptation, the ultimate response to uncontrolled bush encroachment may be the abandonment of grazing areas or migration. This creates a dire need to support the stability of the Borana pastoral systems through the provision of non-traditional pasture improvement methods as alternatives to the traditional bushfire, on which they relied since history, but which had to be abandoned so suddenly. The limited pilot programme of bush clearing and reclamation of communal pastures initiated by the German Agency for Technical Co-operation (GTZ) is desirable and should be emulated in the rest of Borana.

More crucial, perhaps, is the adoption of crops and concomitant annexation of pastures in favourable rainfall areas, especially in communities closer to market centres. In such areas, cultivation could not only be a spontaneous or opportunistic response to seasonal variations in rainfall, but may indicate a more permanent shift in land use. As only certain specific parts of the Borana rangelands are actually suited to crops—about 12%, mainly valley bottoms and water swills (Copcock 1994)—the trend is likely to decrease after such potential areas are exhausted. Again, as argued already, the proposition may not obtain for communities where crops are adopted merely as a prelude for the annexation of private grazing areas. The agro-ecological diversity of the Borana rangelands calls for selective policies that support the adoption of crops where the natural conditions deem it appropriate, and extensive livestock production where suitable. The 'one policy fits all' approach in a heterogeneous system clearly has its shortcomings and limitations. These examples are valuable lessons that should be recalled in planning and policy design, not only at the national, but also at the regional and zonal administrative levels.

References

thereby diminish negative externalities generated on the commons by overstocking. While acknowledging these facts, the in-depth analysis further establishes that various forms of national level policies and development interventions have equally contributed to the observed changes.

First, the advent of cultivation in the overwhelming majority of the communities coincides with the creation of the peasant associations, which formally endorse private rights to croplands, as opposed to the now weakened authority of the traditional elders. So whatever the incentives generated by internal socio-economic, demographic and market variables, the previous strong system of communal resource management may have been responsible for the virtual absence of cultivation in Borana before the creation of the peasant associations.

Second, the emerging pressure on the rangelands is not only a function of demographic and socioeconomic variables, but also environmental variables such as bush encroachment. The paper reveals that the current trend of bush encroachment is a direct result of a policy intervention in mid-1970s. So the resulting high livestock densities and land use changes should be seen more as an outcome from an interaction between environmental, socio-economic and policy variables, where policy variables are largely envisaged as co-actors or facilitators of institutional change. This conforms to the key hypothesis of the paper about the possible role of policy variables in driving changes in land use and property rights in Borana.

Third, the role of development interventions and droughts are also worth reiterating. The development of road networks and market centres in the last decades increased the interaction of pastoralists and neighbouring agropastoral ethnic groups. This interaction could be associated with incentives such as lower information and learning costs for the adoption of crops. The impact of droughts should also be recognised in the sense that many communities reported the drought prone nature of the area to be the primary reason for staying together as commons. That is, the maintenance of common property grazing arrangements and the failure of some communities to adopt crops are motivated by a desire to guarantee mobility at all times. However, without an in-depth analysis on specific drought cycles, little can be said about the longterm impact of droughts on livestock and rangeland dynamics, which this study can only recommend as a task still ahead.

5.4 Policy implications

The implications of these findings are two fold. First, development interventions may specifically have to pay attention to their impacts on traditional values that regulate both human and livestock populations. Second, the possible impacts of development interventions on equity, which could be affecting community level cooperation in managing stock levels, needs to be examined. More precisely, drought management programmes need to be seriously assessed in terms of their impact on livestock numbers and land allocation. Programmes that alleviate losses during drought will reduce output variability, and may lead both to high stock levels and private land over and above the social optimum, both because of moral hazard problems and because of higher risk of externalities being generated on the common pastures.

It is also observed that demographic change in Borana is related to endogenous factors such as weakening of traditional practices on marital age etc. The gradual witting away of traditional values is directly related to the devolution of authority from elders due to the presence of the formal heads of the peasant associations. Therefore strengthening the traditional authority to help implement such rules, through a minimised influence of formal authorities could be a milestone towards restoring stability and sustainability in the Borana pastoral system. While acknowledging that not all traditional rules may have a positive effect on resource management, it is desirable to recognise and strengthen those that positively affect resource use among local communities.

Among environmental variables, the paper recognises that the considerable loss of pastures to bush encroachment creates pressure on the rest of the rangelands and is thus a crucial determinant of stock densities on the remaining resource base, with restricted mobility and subsequent congestion. Although diversification into browsing animals is an evident adaptation, the ultimate response to uncontrolled bush encroachment may be the abandonment of grazing areas or migration. This creates a dire need to support the stability of the Borana pastoral systems through the provision of non-traditional pasture improvement methods as alternatives to the traditional bushfire, on which they relied since history, but which had to be abandoned so suddenly. The limited pilot programme of bush clearing and reclamation of communal pastures initiated by the German Agency for Technical Co-operation (GTZ) is desirable and should be emulated in the rest of Borana.

More crucial, perhaps, is the adoption of crops and concomitant annexation of pastures in favourable rainfall areas, especially in communities closer to market centres. In such areas, cultivation could not only be a spontaneous or opportunistic response to seasonal variations in rainfall, but may indicate a more permanent shift in land use. As only certain specific parts of the Borana rangelands are actually suited to crops—about 12%, mainly valley bottoms and water swells (Coppock 1994)—the trend is likely to decrease after such potential areas are exhausted. Again, as argued already, the proposition may not obtain for communities where crops are adopted merely as a pretext for the annexation of private grazing areas. The agro-ecological diversity of the Borana rangelands calls for selective policies that support the adoption of crops where the natural conditions deem it appropriate, and extensive livestock production where suitable. The 'one policy fits all' approach in a heterogeneous system clearly has its shortcomings and limitations. These examples are valuable lessons that should be recalled in planning and policy design, not only at the national, but also at the regional and zonal administrative levels.

References

Reid S.B. 1997. Land use and land-cover dynamics in response to changes in climatic, biological and socio-political: Method development and a test case in southwestern Ethiopia. ILRI (International Livestock Research Institute), Nairobi, Kenya.

Reid S.B. 1997. Land use and land-cover dynamics in response to changes in climatic, biological and socio-political: Method development and a test case in southeastern Ethiopia. ILRI (International Livestock Research Institute), Nairobi, Kenya.

Annexes

Annex I. Level and variability of rainfall across selected sites, 1982-96 (n = 40)²

<table>
<thead>
<tr>
<th>Station</th>
<th>Characteristics</th>
<th>Mean²</th>
<th>Standard deviation</th>
<th>CV</th>
<th>No. selected</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sarite</td>
<td>LR, LCV</td>
<td>469</td>
<td>103</td>
<td>0.2199</td>
<td>3</td>
</tr>
<tr>
<td>Wachile</td>
<td>LR, HCV</td>
<td>473</td>
<td>222</td>
<td>0.4683</td>
<td>5</td>
</tr>
<tr>
<td>Web</td>
<td>LR, HCV</td>
<td>399</td>
<td>199</td>
<td>0.4987</td>
<td>4</td>
</tr>
<tr>
<td>Dibelo</td>
<td>LR, HCV</td>
<td>353</td>
<td>130</td>
<td>0.3682</td>
<td>2</td>
</tr>
<tr>
<td>Dillo</td>
<td>HR, HCV</td>
<td>499</td>
<td>170</td>
<td>0.3401</td>
<td>3</td>
</tr>
<tr>
<td>Yabello</td>
<td>HR, HCV</td>
<td>519</td>
<td>230</td>
<td>0.4432</td>
<td>5</td>
</tr>
<tr>
<td>Abero</td>
<td>HR, HCV</td>
<td>873</td>
<td>374</td>
<td>0.4286</td>
<td>4</td>
</tr>
<tr>
<td>Negelle</td>
<td>HR, HCV</td>
<td>739</td>
<td>241</td>
<td>0.3267</td>
<td>3</td>
</tr>
<tr>
<td>Moyale</td>
<td>HR, HCV</td>
<td>869</td>
<td>588</td>
<td>0.6768</td>
<td>2</td>
</tr>
<tr>
<td>Hofdura</td>
<td>HR, LCV</td>
<td>717</td>
<td>203</td>
<td>0.2838</td>
<td>4</td>
</tr>
<tr>
<td>Did-Yabello</td>
<td>HR, LCV</td>
<td>496</td>
<td>141</td>
<td>0.2850</td>
<td>1</td>
</tr>
<tr>
<td>Telleh</td>
<td>HR, LCV</td>
<td>634</td>
<td>133</td>
<td>0.2131</td>
<td>4</td>
</tr>
</tbody>
</table>

1. The stratification into high and low rainfall is largely for analytical purposes, as the area is semiarid. It is based on the minimum threshold level of rainfall for the viability of crop production, which varies with the local climate and the productivity of rainfall in different areas. (Bille 1980: Shepherd and Crompton 1987).
2. Annual mean rainfall (mm p.a.)

³: Coefficient of variation.
³: Low rainfall (≤ 495 mm p.a.)
³: High rainfall (≥ 495 mm p.a.)
³: LCV: Low coefficient of variation (CV < 30%)
³: HCV: High coefficient of variation (CV > 30%)

Source: Authors' field survey, 1997/98.

Annex II. Physical characteristics of the four communities in the detailed analysis

<table>
<thead>
<tr>
<th>Variable</th>
<th>PA: Wachile</th>
<th>PA: Dibelo</th>
</tr>
</thead>
<tbody>
<tr>
<td>Site (km²)</td>
<td>18.81</td>
<td>5.58</td>
</tr>
<tr>
<td>Mean rainfall (mm/annum)</td>
<td>473</td>
<td>473</td>
</tr>
<tr>
<td>Coefficient of variation</td>
<td>0.47</td>
<td>0.47</td>
</tr>
<tr>
<td>Mean market distance (km)</td>
<td>42</td>
<td>39</td>
</tr>
<tr>
<td>Wealth (TLU/sh)</td>
<td>7</td>
<td>13</td>
</tr>
<tr>
<td>Cultivated land (%)</td>
<td>10</td>
<td>0</td>
</tr>
<tr>
<td>Private enclosure (%)</td>
<td>20</td>
<td>0</td>
</tr>
<tr>
<td>Group enclosures (%)</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Common grazing areas (%)</td>
<td>70</td>
<td>100</td>
</tr>
</tbody>
</table>

Source: Authors' field survey, 1997/98.

Annexes

Annex I. Level and variability of rainfall across selected sites, 1982–96 (n = 40)

<table>
<thead>
<tr>
<th>Station</th>
<th>Characteristics</th>
<th>Mean</th>
<th>Standard deviation</th>
<th>CV</th>
<th>No. selected</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sarize</td>
<td>LR, LCV</td>
<td>469</td>
<td>103</td>
<td>0.2199</td>
<td>3</td>
</tr>
<tr>
<td>Wachala</td>
<td>LR, HCV</td>
<td>473</td>
<td>222</td>
<td>0.4683</td>
<td>5</td>
</tr>
<tr>
<td>Web</td>
<td>LR, HCV</td>
<td>399</td>
<td>199</td>
<td>0.4987</td>
<td>4</td>
</tr>
<tr>
<td>Dembelwashu</td>
<td>LR, HCV</td>
<td>353</td>
<td>130</td>
<td>0.3682</td>
<td>2</td>
</tr>
<tr>
<td>Dillo</td>
<td>HB, HCV</td>
<td>499</td>
<td>170</td>
<td>0.3401</td>
<td>3</td>
</tr>
<tr>
<td>Yabello</td>
<td>HB, HCV</td>
<td>519</td>
<td>230</td>
<td>0.4432</td>
<td>5</td>
</tr>
<tr>
<td>Areko</td>
<td>HB, HCV</td>
<td>873</td>
<td>374</td>
<td>0.4286</td>
<td>4</td>
</tr>
<tr>
<td>Negelle</td>
<td>HB, HCV</td>
<td>739</td>
<td>241</td>
<td>0.3267</td>
<td>3</td>
</tr>
<tr>
<td>Moyle</td>
<td>HB, HCV</td>
<td>869</td>
<td>588</td>
<td>0.6758</td>
<td>2</td>
</tr>
<tr>
<td>Hidilea</td>
<td>HB, LCV</td>
<td>717</td>
<td>203</td>
<td>0.2838</td>
<td>4</td>
</tr>
<tr>
<td>Did-Yabello</td>
<td>HB, LCV</td>
<td>496</td>
<td>141</td>
<td>0.2850</td>
<td>1</td>
</tr>
<tr>
<td>Tellele</td>
<td>HB, LCV</td>
<td>654</td>
<td>135</td>
<td>0.2121</td>
<td>4</td>
</tr>
</tbody>
</table>

1. The stratification into high and low rainfall is largely for analytical purposes, as the area is semi-arid. It is based on the minimum threshold level of rainfall for the viability of crop production, i.e., annual variations of farm availability and the relationship between distance in rainfall variability and the productivity of marginal ecosystems (Bille 1965; Shepherd andCoghley 1967).

CV - Coefficient of variation.

LR = Low annual mean (v. 495 mm p.a.)

HR = High annual mean (> 495 p.a.)

LCV = Low coefficient of variation (CV < 30%)

HCV = High coefficient of variation (CV > 30%)

Source: Authors' field survey, 1997/98.

Annex II. Physical characteristics of the four communities in the detailed analysis

<table>
<thead>
<tr>
<th>Variable</th>
<th>PA: Wachale</th>
<th>PA: Dembelwashu</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Soele</td>
<td>Arbare</td>
</tr>
<tr>
<td>Size (km²)</td>
<td>18.81</td>
<td>5.58</td>
</tr>
<tr>
<td>Mean rainfall (mm/annum)</td>
<td>473</td>
<td>473</td>
</tr>
<tr>
<td>Coefficient of variation</td>
<td>0.47</td>
<td>0.47</td>
</tr>
<tr>
<td>Mean market distance (km)</td>
<td>42</td>
<td>39</td>
</tr>
<tr>
<td>Wealth (TLU/h)</td>
<td>7</td>
<td>13</td>
</tr>
<tr>
<td>Cultivated land (%)</td>
<td>10</td>
<td>0</td>
</tr>
<tr>
<td>Private enclosure (%)</td>
<td>20</td>
<td>0</td>
</tr>
<tr>
<td>Group enclosure-kilo (%)</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Common grazing area-kilo (%)</td>
<td>70</td>
<td>100</td>
</tr>
</tbody>
</table>

Source: Authors' field survey, 1997/98.
Annex III. Demographic attributes of the four communities in the detailed analysis

<table>
<thead>
<tr>
<th>Variable</th>
<th>PA: Wachale</th>
<th>PA: Dambelawachu</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Soble</td>
<td>Arbore</td>
</tr>
<tr>
<td>No. of settlements (Old)</td>
<td>7</td>
<td>5</td>
</tr>
<tr>
<td>Total number of households</td>
<td>46</td>
<td>44</td>
</tr>
<tr>
<td>Female headed households</td>
<td>17 (37)</td>
<td>12 (27)</td>
</tr>
<tr>
<td>Total population</td>
<td>322</td>
<td>276</td>
</tr>
<tr>
<td>Population density<sup>a</sup></td>
<td>17</td>
<td>49</td>
</tr>
<tr>
<td>Sex composition</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Number of males</td>
<td>163 (51)</td>
<td>146 (53)</td>
</tr>
<tr>
<td>Number of females</td>
<td>159 (49)</td>
<td>130 (47)</td>
</tr>
<tr>
<td>Dependency ratios</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Old people (dependent)</td>
<td>32 (10)</td>
<td>19 (7)</td>
</tr>
<tr>
<td>Children (partly dependent)<sup>b</sup></td>
<td>186 (58)</td>
<td>136 (49)</td>
</tr>
</tbody>
</table>

Figures in parentheses show percentages.
PA = present occupation.
^a People per km².
^b Children are not entirely dependent as most of the home-based bending activities is carried out by children, mainly of the ages of eight years and above.

Source: Authors' field survey, 1997/98.