RESEARCH SUPPORT FOR
FORDWAH EASTERN SADIQIA (SOUTH)
IRRIGATION AND DRAINAGE PROJECT

WATER PERFORMANCE INDICATORS USING
SATELLITE IMAGERY FOR
THE FORDWAH EASTERN SADIQIA (SOUTH)
IRRIGATION AND DRAINAGE PROJECT

Thomas Alexandridis
Salman Asif
Samia Ali

June 1999
Pakistan Program
International Water Management Institute
Table of Contents

Table of Contents
List of Figures
List of Tables
Abstract
Acknowledgements
Abbreviations

PART A: BACKGROUND
1. Introduction
2. The Fordwah Eastern Sadiqia (South) Irrigation and Drainage System
3. Materials Used
 3.1 Image Processing
 3.2 Extraction of Descriptive Statistics

PART B: PERFORMANCE ASSESSMENT
4. Performance Indicators
5. Adequacy
6. Reliability
7. Equity
8. Relation of Three Indicators
9. References
List of Figures

Figure 1 - Physical map and location map of the FES(S) project area
Figure 2 - Flow chart for ETact and EF calculations
Figure 3 - Actual evapotranspiration and evaporative fraction maps for Fordwah Eastern Sadiqia (South) command area
Figure 4 - Time series of ETact, EF for the FES(S) project area, and the Eastern Sadiqia Canal discharge
Figure 5 - Time series of EF values for distributaries of the FES(S) project area, and target EF values
Figure 6 - Average deviation from the mean EF (AVEDEV) at the distributary command level
Figure 7 - Spatial coefficient of variation of ETact at the distributary level
Figure 8 - Buffer zone map and relation of ETact and EF with the distance from canals

List of Tables

Table 1 - Some performance indicators presented in literature
Table 2 - List of distributaries in the order of inadequate water use for rabi and kharif 93-94
Table 3 - Unreliable distributary commands during rabi or kharif 93-94
Table 4 - Correlation coefficients between the three performance indicators
Abstract

Considering the need for the assessment of the performance of irrigation systems, the difficulties involved in data collection, and the non-availability of spatial information for the calculation of present performance indicators, a methodology using three indicators is presented. The performance is assessed in terms of water use, using adequacy, reliability and equity as indicators, which are described in statistical terms from a series of actual evapotranspiration and evaporative fraction maps of the Fordwah Eastern Sadiqia (South) project area. The maps were calculated using NOAA AVHRR satellite images that cover the period for rabi and kharif 93-94. Results reveal seasonal inadequacies of the water use based on target evaporative fraction values, as well as inadequacies in some distributary command areas. After a relative comparison of temporal fluctuations of the evaporative fraction, local unreliability is revealed. Considering the heterogeneity in the spatial distribution of the actual evapotranspiration as inequity, distributary command areas with uneven water use are indicated, and a decrease in the water use with an increasing distance from canals has been proved. Finally, a strong correlation between adequacy and equity has been determined, which leads to the conclusion that in areas where water is insufficient, management is a difficult task.
Acknowledgements

The authors are thankful to Dr. S.A. Prathapar and Dr. W.G.M. Bastiaanssen for their interest and supervision, as well as to Prof. G.V. Skogerboe, C.J. Perry, Z. Habib and A. Hameed for their constructive comments that aided this report to take the final form. Also, M.D. Ahmad for the enormous work in image processing and map creation, and Z. Tahir for his assistance in gathering the secondary data. Finally, we express our gratitude to Y. Chemin for his ideas and the endless hours he spent for the image processing.

to friends +
Abbreviations

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>AVHRR</td>
<td>advanced very high resolution radiometer</td>
</tr>
<tr>
<td>EF</td>
<td>evaporative fraction ((\Lambda))</td>
</tr>
<tr>
<td>ETact</td>
<td>actual evapotranspiration over 24 hours</td>
</tr>
<tr>
<td>FES(S)</td>
<td>Fordwah Eastern Sadiqia (South)</td>
</tr>
<tr>
<td>GCA</td>
<td>gross command area</td>
</tr>
<tr>
<td>NOAA</td>
<td>national oceanic and atmospheric administration</td>
</tr>
<tr>
<td>SEBAL</td>
<td>surface energy balance algorithm for land</td>
</tr>
</tbody>
</table>
Part A: BACKGROUND

1. Introduction

Improved irrigation management is required for an increase in food production, since irrigated agriculture plays a major role in establishing the food security of most Asian countries. Performance assessment is considered a critical element to meet this target. Reasons for performance assessment of irrigation systems can be summarized with the following: to assess the general health of a system, to assess impacts or interventions, to compare actual results to planned targets, to improve system operations and to compare the performance of a system with others or with the same system over time.

Conventional surveys are based on overall estimates about the productivity of the total command area; they are rarely adequate to provide spatially distributed estimates within a command area. On the other hand, satellite remote sensing data can provide information on cropped area, cropping pattern and crop productivity in irrigation systems (Thiruvenkatachari and Sakhthivadivel, 1997). The ability of the satellite remote sensing to provide spatial data and monitor changes during a season and across years allow the performance of irrigation systems to be assessed effectively.

In this study, the spatial and temporal distribution of the total water used is described in statistical ways. This conjunctive water use approach is advantageous as it deals with the situation in view of the water that is evapotranspirated by the plants and fields, i.e. in view of the crop health. Therefore, the availability of water for the fields is checked independent of the source of the water (surface irrigation, groundwater irrigation, rainfall, canal seepage, capillary rise). The aim of the study is to assess the performance of the Fordwah Eastern Sadiqia (South) irrigation and drainage system, using as performance indicators the adequacy, reliability and equity in the spatial and temporal distribution of water use in the area, for rabi and kharif 93-94.

2. The Fordwah Eastern Sadiqia (South) Irrigation and Drainage System

The Fordwah Eastern Sadiqia (South) (FESS) project area is located in the south-eastern Punjab Province, in the Bahawalnagar District. The area is bordered on the north-west by the Malik Branch Canal, on the south by the 6-R Distributary of the Hakra Branch, and on the east by India. The gross command area (GCA) under the FESS(S) project is 137,000 ha. The surface water is distributed from distributaries from the Hakra and Malik Branches, from minors and direct outlets. The distributary command map is presented in Figure 1.

The area has an arid climate, except during the July to September monsoon season. The average annual rainfall is about 246mm. The area falls in the "Cotton-Wheat" agro-climatic zone, where conditions permit two growing seasons (rabi and kharif). The cropping pattern shows that wheat and cotton are the dominant crops for rabi and kharif, respectively, while the second major crop during both seasons is fodder. The topsoil is generally medium textured, and the topology is largely flat with no natural drainage. Sand dunes occupy about 6 percent of the area (WAPDA report, 1995).

The irrigation system follows the warabandi principle, and the irrigation turn time averages almost an hour per hectare. An overwhelming number of operators of the tail reach (90 percent) and 92 percent along the upper reaches reported an shortage of irrigation water during the survey year of 93-94. Mean number of irrigation turns applied to sugarcane, cotton, rice and wheat are 9, 4, 10 and 4, respectively. These are much lower than that recommended for sugarcane, but are comparable for the other crops.

About 50 percent of the project area is waterlogged with a water table within 5 feet. Waterlogging appears mainly in the central and north-east parts of the area. Waterlogging first appeared on lands in the upper reaches of the Hakra Branch and is gradually moving downstream. About 12 percent of the
area is affected by soil salinity above tolerance levels of most crops. A comparison with previous surveys indicates an increasing trend over time (WAPDA report, 1995).

Figure 1 - Physical map and location map of the FES(S) project area

3. Materials Used

3.1 Image Processing

Satellite images were acquired for the period of October 1993 to September 1994, from the AVHRR sensor of the NOAA satellite. The spatial resolution of the sensor is 1.1 km at nadir, the radiometric resolution is 10 bits per word, and images can be acquired twice a day. The frequent overpasses make the AVHRR data useful for monitoring purposes, when compared with higher resolution satellites (e.g. SPOT, Landsat, IRS). The AVHRR images cover a total swath of 2,400 km and are adequate for national scale projects.

Reflected and emitted energy can be recorded from AVHRR in five spectral bands: band 1 in the visible range of the electromagnetic spectrum, band 2 in near-infrared, band 3 in mid-infrared, and bands 4 and 5 in thermal infrared. All spectral bands and other products were implemented in the Surface Energy Balance Algorithm for Land (SEBAL) model (Bastiaanssen, 1995) in order to estimate the actual evapotranspiration over 24 hours and the evaporative fraction, which were used in this study to express the performance indicators. The actual work is extensive and laborious, and the
Figure 2 - Flow chart for ETact and EF calculations

Raw Images

Reflectance B1 & B2 at TOA

Broadband Reflectance at TOA

Surface Reflectance of B1 & B2

Black Body Radiation of B4 at TOA

Broadband Albedo

NDVI

Surface Emissivity

Surface Temperature (T_o)

Wind Speed at 5m (U_5)

Surface Roughness (Z_{om})

Net Radiation

Soil Heat Flux

Aerodynamic Resistance of heat Flux (r_{ah})

Sensible Heat Flux

Net Radiation /24H

Evaporative Fraction

Actual Evaporation /24H
details are not in the realms of this study. The theory behind the estimations is summarized below. Details can be found in the work of Bastiaanssen et al. (1996), Moran et al. (1994) and Ud Din Ahmad and Chemin (forthcoming), in which all steps and calculations are described in detail. The flowchart, which describes the steps and the intermediate products, is shown in Figure 2.

The thermo-dynamic equilibrium between the moisture and heat flow in the soil-vegetation-atmosphere continuum is described in the land surface energy balance equation:

\[Rn = G_o + H_o + \lambda E \quad (W \ m^{-2}) \]

where \(Rn \) is the net radiation absorbed or emitted from the earth’s surface, \(G_o \) is the soil heat flux to warm or cool the soil, \(H_o \) is the sensible heat flux to warm or cool the atmosphere and \(\lambda E \) is the latent heat flux, which is the energy allocated for water evaporation. The values for \(G_o, H_o \) and \(\lambda E \) are positive when directed away from the land surface, and \(Rn \) is positive when radiation is absorbed at the land surface. The physical attributes required to solve the surface energy balance are either directly measured by visible, near-infrared and thermal-infrared channels, or indirectly estimated using semi-empirical relationships.

The time integral of latent heat flux in a 24-hour period is equivalent to the actual evapotranspiration rate:

\[ET_{act}^{24} = \int_0^{6400} \frac{\lambda E(t) \ dt}{\lambda \rho_o 86400} \quad (mm \ s^{-1}) \]

where \(\lambda \) (J kg\(^{-1}\)) is the latent heat of vaporization and \(\rho_o \) (kg m\(^{-3}\)) is the density of water.

Instantaneous values for potential evapotranspiration can be mapped from remote sensing observations without the involvement of crop factors such as:

\[\lambda E_{pot} = Rn - G_o \quad (W \ m^{-2}) \]

A combination of the surface energy balance equation and the previous equation provide the opportunity to define the relative evaporation as evaporative fraction \(\Lambda \):

\[\Lambda = \frac{\lambda E}{Rn - G_o} \quad (W \ m^{-2}) \]

in which the numerator represents the actual evaporation and the denominator the available energy. Therefore, evaporative fraction is the portion of the available energy used for evaporation.

In Figure 3 are shown the actual evapotranspiration (\(ET_{act} \)) and evaporative fraction (\(EF \)) maps of February 17 and April 29, 1994 for the Fordwah Canal command area. From these maps, the unirrigated area is masked out. The masks for rabi and kharif come from Alexandridis et al. (forthcoming).
Figure 3 - Actual evapotranspiration and evaporative fraction maps for Fordwah Eastern Sadiqia (South) command area
3.2 Extraction of Descriptive Statistics

The mean and standard deviations for all the distributary commands of the FES(S) project area were extracted from the 20 ET_{act} and EF maps. The results and analyses are based on distributary command area instead of the pixel basis because: 1) this level of detail is considered to be satisfactory, and 2) due to possible mis-registration of the 20 images, pixel-to-pixel overlap cannot be guaranteed.

The time series of mean ET_{act} and mean EF (for the whole FES(S) project area) is presented in Figure 4. The fluctuations in the discharge of the Eastern Sadiqia Canal, which is delivering water to the Hakra and Malik Branch Canals, are also plotted in the same graph. Factors that contribute to the high undulation of the ET_{act} and EF values (for the whole FES(S) project area) are: 1) the fluctuation in the discharge of the Eastern Sadiqia Canal, 2) the daily atmospheric conditions (temperature, wind speed, rainfall) and 3) the phenological stage of each crop and its water requirement corresponding to its growth. The warabandi is not influencing the spatial-temporal distribution of ET_{act} and EF since it is watercourse-based, and variations are not evident in the large area divisions, i.e. distributary commands.

Figure 4 - Time series of ET_{act}, EF for the FES(S) project area, and the Eastern Sadiqia Canal discharge
Part B: PERFORMANCE ASSESSMENT

4. Performance Indicators

Many authors have proposed different indicators to measure irrigation system performance as summarized by Rao (1993), and have given examples for their use at particular irrigation systems (Molden et al. 1998, Saktihivadivel et al. 1999, Bastiaanssen et al. 1996, Thiruvengadachari and Saktihivadivel 1997). The indicators listed by Rao (1993) deal primarily with the quality of the irrigation service provided by the managers of the water delivery system, the agricultural production that is the output of the irrigated agriculture system, and to a limited extent, the economic benefits derived from the agricultural production (Table 1). The same table also presents the indicators proposed by Molden et al. (1998). Other types of indicators deal with social aspects, processes and sustainability of the system.

Interesting features of these indicators, which also reveal their limitations, are: 1) they are based on a relative comparison of absolute values, rather than being referenced to standards or targets, 2) they are related to phenomena that are common to irrigation and irrigated agricultural systems, 3) they relate to outputs and are bulk measures of irrigation and irrigated agricultural systems, and thus, provide limited information about internal processes, 4) they are more efficient in irrigated agricultural systems where water is the limiting factor for the maximum yield (infertility, pests, weeds, etc), and 5) there are uncertainties in the source of data (secondary data) and uncertainties in the estimates (e.g. traditional methods of estimating crop evapotranspiration).

In this study, three indicators are analysed: adequacy, reliability and equity in water use. These are general indicators with the advantage of not being related to any specific output feature of the system. They show the hydrologic condition of the fields, which is the feature primarily related to water management and of interest to the water managers. These performance indicators can be related to information acquired from remote sensing, and therefore, allow the users to cost effectively monitor a large area over a period of time.

Adequacy is the quantitative component, and is defined as the sufficiency of water use in an irrigation system. An irrigation system, ideally, should have enough water to fulfill the crop needs. The relative evaporation provides direct information on the stress condition of crops. In this study, adequacy in water use is defined as:

\[\text{Adequacy} = \text{Evaporative Fraction (EF)} \]

Spatial analysis of the EF maps in the FES(S) project area is expected to reveal distributaries where water scarcity may be experienced. By this time, unfortunately, the remote sensing representations of adequacy (EF) are not well connected (quantitatively) with crop water requirements; therefore, only spatial (distributary level) and temporal (dates of image acquisition) relative comparisons were possible.

Reliability is the time component of the study, and is defined as the correspondence of water supply upon request. Also, it expresses the degree to which the irrigation system and its deliveries conform to the prior expectations of its users (Rao, 1993). A well administered irrigation system, should have water when crops are in need. Farmers should also be confident of receiving reliable water deliveries at scheduled times. Two aspects of reliability are global and local. When, for some reason, (canal breach, sudden demand to divert water for other uses) a general disruption of surface deliveries to all irrigators occurs, then it is global. Local reliability is when some areas of the command area receive a more stable water supply over time. This study assesses local reliability within the distributaries of the FES(S) project area. As revealed by previous reviews (Rao, 1993), reliability is difficult to monitor due to the difficulty and cost involved in secondary data collection over a long period of time. The use of remote sensing has made it possible to monitor a large area for the two growing seasons of 93-94. Time series analysis of EF maps can reveal distributaries with unstable water use:
Unreliability = Temporal fluctuation of EF

Temporal variations of EF will be examined, since ETact varies considerably throughout the year due to changing solar conditions.

Table 1 - Some performance indicators presented in literature

<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>a. Indicators of performance of water delivery system</td>
<td>a. Indicators of irrigated agricultural output</td>
</tr>
<tr>
<td>• Delivery performance ratio</td>
<td>• Output per cropped area ($/ha)</td>
</tr>
<tr>
<td>• Relative water supply or irrigation efficiencies for conveyance and</td>
<td>• Output per unit command area ($/ha)</td>
</tr>
<tr>
<td>distribution</td>
<td>• Output per unit irrigation supply ($/m³)</td>
</tr>
<tr>
<td>• Modified interquartile ratio</td>
<td>• Output per unit water consumed ($/m³)</td>
</tr>
<tr>
<td>• Reliability of water delivery as predicted by a delivery schedule</td>
<td></td>
</tr>
<tr>
<td>• Fluctuations in groundwater levels</td>
<td>b. Other comparative indicators</td>
</tr>
<tr>
<td>b. Indicators of performance of the irrigated agriculture system</td>
<td>• Relative water supply</td>
</tr>
<tr>
<td>• Yield per unit land compared to nearby rain-fed land</td>
<td>• Relative irrigation supply</td>
</tr>
<tr>
<td>• Yield per unit water</td>
<td>• Water delivery capacity (%)</td>
</tr>
<tr>
<td>• Percent of time in a potential growing season that a field is</td>
<td>c. Financial indicators</td>
</tr>
<tr>
<td>cultivating a crop (or crops)</td>
<td>• Gross return on investment (%)</td>
</tr>
<tr>
<td>c. Indicators of performance of the irrigated agriculture economic system</td>
<td>• Financial self-sufficiency</td>
</tr>
<tr>
<td>• Profitability to farmers – net (income) return per unit land</td>
<td></td>
</tr>
<tr>
<td>• Profitability to the system – net return on investment in the irrigation system</td>
<td></td>
</tr>
</tbody>
</table>

Equity is the social component and is defined as the fairness in the spatial distribution of water use. Good management in water allocation is important when the water volume is not adequate to meet the demands of the full command area over the entire season. According to Levine and Coward (1989), a system that is considered fair by most farmers is more likely to be productive and efficient than one that the state has designed on the basis of productivity and efficiency, but which is considered unfair by the farmers. In this study, equity is considered the uniformity in the spatial distribution of water use:

Equity = spatial variation of ETact

The analysis of the ETact maps can reveal distributaries where water use is not uniform, allow comparison among them, and show the time of the season when inequity is at a maximum.
5. Adequacy

The time series of mean EF values plotted for individual distributary commands (Figure 5) shows a tendency for high EF values in the period of December 1993 to January 1994, which can be explained by the farmers' behavior to over-irrigate at the end of December in anticipation of the canal closure in January. The water table is rising due to these farming practices and adequate water is available for evapotranspiration even during the beginning of the canal closure (see Figure 4). Later, there is a distinct drop in water use during March to the end of April, which is conforming with the maturity of the wheat crop (major rabi crop for FES(S)), when no irrigation is necessary. After April, the high values of EF are explained from the irrigation for cotton germination (major kharif crop for FES(S)), followed by the monsoon rain season, which also implies a raise in the water table and therefore to the water available for evapotranspiration.

To the authors' knowledge, and as discussed in the previous section, papers presenting critical values of EF are not available. According to Bastiaanssen et al. (1996), crop growth reductions are tolerable as long as EF > 0.75. To improve this statement for this particular study area, target values for the major crops of the FES(S) project area are given as: rice 0.9, wheat 0.8, maize 0.8, sugarcane 0.7 and cotton 0.75 (Bastiaanssen 1999, pers. com.). Unfortunately, a crop cover map for 93-94 is not available for the study area, and therefore, an area-weighted average of the above values is calculated for each growing season, using the cropping pattern available from reported secondary data (source: Crop Acreage Data of Provincial Irrigation and Power Departments of the Punjab and Sindh). The area-weighted average target values of EF for the whole FES(S) project area are 0.79 for rabi and 0.76 for kharif.

Figure 5 - Time series of EF values for distributaries of the FES(S) project area, and target EF values

When comparing the time series curves of Figure 5 with the target values, it is evident that many distributaries do not meet the requirement for quite a long period. This is expected, and conforms with
farmers' reports of water deficiencies (WAPDA report, 1995). The seasonal average EF value for each distributary, together with the average for the whole FES(S) project area, has been calculated in Table 2. Distributaries like Sunder (1-R), Baghsar (5-R), Dunga (2-R) and Harun (4-R) seem to have an overall adequate water use for rabi 93-94, while the pattern changes for kharif 94 when none of the distributaries is meeting the overall kharif target value. Harun (4-R) is again performing well, and this can be due to the existence of a number of tubewells in the south-west part of the distributary. Murad Distributary, as well as the area fed directly from the Malik Branch Canal (Direct WC Malik), are also performing well in rabi and kharif, possibly because the Hakra Branch Canal is less favored than the Malik Branch Canal in the case of water shortage.

Table 2 - List of distributaries in the order of inadequate water use for rabi and kharif 93-94

<table>
<thead>
<tr>
<th>Distributary</th>
<th>EF</th>
<th>(c) Difference from target</th>
<th>Distributary</th>
<th>EF</th>
<th>(f) Difference from target</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sunder (1-R)</td>
<td>0.81</td>
<td>(2.4%)</td>
<td>Target value</td>
<td>0.76</td>
<td>(0.0%)</td>
</tr>
<tr>
<td>Baghsar (5-R)</td>
<td>0.80</td>
<td>(1.8%)</td>
<td>Harun (4-R)</td>
<td>0.69</td>
<td>(-8.8%)</td>
</tr>
<tr>
<td>Dunga (2-R)</td>
<td>0.80</td>
<td>(1.8%)</td>
<td>Murad</td>
<td>0.67</td>
<td>(-12.0%)</td>
</tr>
<tr>
<td>Target value</td>
<td>0.79</td>
<td>(0.0%)</td>
<td>Direct WC (Hakra)</td>
<td>0.66</td>
<td>(-12.6%)</td>
</tr>
<tr>
<td>Harun (4-R)</td>
<td>0.79</td>
<td>(-0.4%)</td>
<td>Marnun (6-R)</td>
<td>0.65</td>
<td>(-14.5%)</td>
</tr>
<tr>
<td>Sirajwah</td>
<td>0.78</td>
<td>(-1.0%)</td>
<td>Direct WC (Malik)</td>
<td>0.65</td>
<td>(-15.0%)</td>
</tr>
<tr>
<td>Direct WC (Malik)</td>
<td>0.78</td>
<td>(-1.3%)</td>
<td>FES(S) (total)</td>
<td>0.65</td>
<td>(-15.0%)</td>
</tr>
<tr>
<td>Bhukan (Malik)</td>
<td>0.78</td>
<td>(-1.6%)</td>
<td>Khatan (3-R)</td>
<td>0.64</td>
<td>(-15.3%)</td>
</tr>
<tr>
<td>Khatan (3-R)</td>
<td>0.77</td>
<td>(-2.4%)</td>
<td>Baghsar (5-R)</td>
<td>0.63</td>
<td>(-16.8%)</td>
</tr>
<tr>
<td>Murad</td>
<td>0.77</td>
<td>(-2.9%)</td>
<td>Dunga (2-R)</td>
<td>0.61</td>
<td>(-19.9%)</td>
</tr>
<tr>
<td>Direct WC (Hakra)</td>
<td>0.76</td>
<td>(-3.3%)</td>
<td>Sunder (1-R)</td>
<td>0.60</td>
<td>(-20.6%)</td>
</tr>
<tr>
<td>Marnun (6-R)</td>
<td>0.76</td>
<td>(-3.3%)</td>
<td>Sirajwah</td>
<td>0.60</td>
<td>(-20.6%)</td>
</tr>
<tr>
<td>FES(S) (total)</td>
<td>0.76</td>
<td>(-4.3%)</td>
<td>Bakushah</td>
<td>0.59</td>
<td>(-21.7%)</td>
</tr>
<tr>
<td>Mobarik (1-L)</td>
<td>0.68</td>
<td>(-13.7%)</td>
<td>Mobarik (1-L)</td>
<td>0.56</td>
<td>(-25.7%)</td>
</tr>
<tr>
<td>Girdhariwala</td>
<td>0.65</td>
<td>(-18.1%)</td>
<td>Bhukan (Malik)</td>
<td>0.55</td>
<td>(-27.9%)</td>
</tr>
<tr>
<td>Bakushah</td>
<td>0.64</td>
<td>(-19.4%)</td>
<td>Girdhariwala</td>
<td>0.38</td>
<td>(-49.4%)</td>
</tr>
</tbody>
</table>

On the other hand, Mobarik (1-L), Girdhariwala and Bakushah Distributaries have the most inadequate water use during rabi and kharif 93-94. The explanation can be the higher terrace that fields lie along the east of the Hakra Branch Canal, so that water is delivered with a greater difficulty and only when the level of the Hakra Canal is above a limit. Difficulties relating to cultivating the entire area because of military restrictions (proximity to the Indian border) may also occur.

In conclusion, there are water deficiencies for some periods in some distributaries, and sometimes in the whole of the FES(S) area. But, during the critical major crop growth periods (wheat: 27 October – 11 November and 6 December – 25 January, cotton: 1 May – 1 June and 19 July – 17 September) the water use appears close to the target values.

6. Reliability

The average of the absolute deviations of the data points from their mean (AVEDEV) is a measure of the variability in a data set. The equation for AVEDEV is:

$$AVEDEV = \frac{1}{n} \sum |x - \bar{x}|$$
Therefore, the temporal variability of EF for individual distributary commands can be described with this statistical parameter, which shows the magnitude of fluctuation, therefore, unreliability. The AVEDEV values of all the distributaries for rabi and kharif 93-94 are presented in Figure 6. In this study, the point that determines reliability is the AVEDEV for the whole FESS project area, and therefore the AVEDEV values for individual distributaries are compared with the value for the whole FES(S) project area. Distributaries that are more unreliable than the average of the FES(S) project area are listed in Table 3.

Figure 6 - Average deviation from the mean EF (AVEDEV) at the distributary command level

![Graph showing AVEDEV from mean EF for various distributaries.]

Evident is, that a larger area is reliable in water use during rabi than kharif. On the other hand, the percentage differences for rabi are bigger, which means that the magnitude of unreliability is big in the few distributaries that are unreliable during rabi. When examining these distributaries closer, they are lying on

Table 3 - Unreliable distributary commands during rabi or kharif 93-94

<table>
<thead>
<tr>
<th>(a) Distributary name</th>
<th>(b) % difference of particular distributary AVEDEV from the value for FES(S)</th>
<th>(c)</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Rabid</td>
<td>Kharif</td>
<td></td>
</tr>
<tr>
<td>Girdhariwala</td>
<td>57</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>Sirajwah</td>
<td>51</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>Bakushah</td>
<td>51</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>Sunder (1-R)</td>
<td>8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Direct WC (Hakra)</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dunga (2-R)</td>
<td>30</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Khatan (3-R)</td>
<td>7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mubarak (1-L)</td>
<td>28</td>
<td>24</td>
<td></td>
</tr>
<tr>
<td>Baghsar (5-R)</td>
<td>21</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mamun (6-R)</td>
<td>3</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
the left side of the Hakra Branch Canal, where the terrace is at a higher level, and water cannot always be delivered easily. Lift irrigation is required for these areas, which is increasing the cost. Other distributaries that appear to be unreliable during kharif are Dunga (2-R) and Baghsar (5-R).

7. Equity

The spatial coefficient of variation of ETact is the statistical parameter that is used in this study to reveal high spatial heterogeneity, which is indicative of an uneven water use. The coefficient of variation of the values within each distributary command area is calculated for each ETact map (Figure 7). High values show distributaries with an uneven water use.

When comparing the coefficients of variation between distributaries in Figure 7, a higher heterogeneity in water use is observed on the left side of Hakra Branch Canal. As discussed before, the farmers in these distributaries experience difficulties with their surface water supply and some military restrictions may apply. Another reason that may add to the uneven spatial water use is the significant seepage from the Hakra Branch Canal, which decreases drastically close to the border, as the adjacent Indian area is dry with a low water table level.

When comparing the time sequence of the coefficients of variation, there is a trend towards increasing equity in water use during the canal closure (January) and during periods when water is not necessary for the major crop growth (end of each season, around harvesting). On the other hand, variation in water use is increasing with the beginning of the rice growing season (June), when more water is allocated to rice paddies. The beginning of the monsoon season in July does not seem to homogenize the spatial distribution of ETact as was expected, therefore, we conclude that irrigation water (surface or ground) and capillary rise are factors that influence the spatial distribution of ETact more, rather than the rainfall.

The spatial distribution of ETact with relation to the distance from canals was also studied. Buffer zones with an increasing distance from the canal system (branch canals, distributaries, or minors) were used to extract statistics from the average ETact and EF maps for the two seasons (Figure 8). The results show a distinct drop of ETact and EF as the distance increases, which is indicative of a lower water use away from the distributaries. The decrease in ETact reveals a possible change in the cropping pattern, restricting the cultivation of high water demanding crops close to the canals. This restriction indicates that farmers have unequal chances to grow the desired crop. The EF decrease reveals that despite farmers' restriction to grow low water requirement crops in the areas located away from the canals, these crops still suffer from water stress. The high value corresponding to the zone of 3,500m is explained due to waterlogging in the areas north of Mamun (6-R), where the zone mostly appears.
Figure 7 - Spatial coefficient of variation of ETact at the distributary level
8. Relation of Three Indicators

In the previous sections unreliable and unequal distributaries have been indicated for and the occasions when the water use is inadequate. Of interest to water managers is to assess if water scarcity is followed by inequity in spatial water distribution, or by temporal unreliability. The relation between the three performance indicators is examined in the space domain, after the time influence has been eliminated by averaging for each season. The correlation coefficients between these time-averaged indicators, as well as for selected dates for the two seasons are listed in Table 4.

A strong positive correlation exists between adequacy and equity throughout the two growing seasons, while the relationship between reliability with the other indicators is not constant, and high correlations like for January 21 and April 04 may be due to chance. Therefore, in distributaries of the FES(S) project area where the water use is inadequate, the water use is also unequally distributed among the users.

From this example, it has been shown that there is a strong possibility that water scarcity also generates inequity and unreliability in spatial and temporal water distribution. As expected (from WAPDA Report, 1995) in irrigation systems where water deficiencies are frequent, management is a difficult task. In these systems, Levine and Coward (1989) prefer to use the term administration instead of management.
<table>
<thead>
<tr>
<th>Dec-02 adequacy reliability equity</th>
<th>Apr-29 adequacy reliability equity</th>
</tr>
</thead>
<tbody>
<tr>
<td>adequacy</td>
<td>adequacy</td>
</tr>
<tr>
<td>reliability</td>
<td>reliability</td>
</tr>
<tr>
<td>equity</td>
<td>equity</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>-0.38</td>
<td>0.05</td>
</tr>
<tr>
<td>0.91</td>
<td>0.73</td>
</tr>
<tr>
<td>-0.40</td>
<td>-0.04</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Jan-21 adequacy reliability equity</th>
<th>Jun-13 adequacy reliability equity</th>
</tr>
</thead>
<tbody>
<tr>
<td>adequacy</td>
<td>adequacy</td>
</tr>
<tr>
<td>reliability</td>
<td>reliability</td>
</tr>
<tr>
<td>equity</td>
<td>equity</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>0.71</td>
<td>-0.02</td>
</tr>
<tr>
<td>0.80</td>
<td>0.94</td>
</tr>
<tr>
<td>0.53</td>
<td>-0.01</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Apr-04 adequacy reliability equity</th>
<th>Sep-24 adequacy reliability equity</th>
</tr>
</thead>
<tbody>
<tr>
<td>adequacy</td>
<td>adequacy</td>
</tr>
<tr>
<td>reliability</td>
<td>reliability</td>
</tr>
<tr>
<td>equity</td>
<td>equity</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>0.94</td>
<td>0.12</td>
</tr>
<tr>
<td>0.98</td>
<td>0.61</td>
</tr>
<tr>
<td>0.92</td>
<td>0.21</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>rabi average adequacy reliability equity</th>
<th>kharif average adequacy reliability equity</th>
</tr>
</thead>
<tbody>
<tr>
<td>adequacy</td>
<td>adequacy</td>
</tr>
<tr>
<td>reliability</td>
<td>reliability</td>
</tr>
<tr>
<td>equity</td>
<td>equity</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>0.95</td>
<td>-0.20</td>
</tr>
<tr>
<td>0.95</td>
<td>0.60</td>
</tr>
<tr>
<td>1</td>
<td>0.21</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>
9. References

<table>
<thead>
<tr>
<th>Report No.</th>
<th>Title</th>
<th>Author</th>
<th>Year</th>
</tr>
</thead>
<tbody>
<tr>
<td>R-1</td>
<td>Crop-Based Irrigation Operations Study in the North West Frontier Province of Pakistan</td>
<td>Carlos Garces-R, D.J. Bandaranagoda, Pierre Strosser</td>
<td>June 1994</td>
</tr>
<tr>
<td></td>
<td>Volume II: Research Approach and Interpretation</td>
<td>Rana M. Afaq, Pierre Strosser, Saeed ur Rehman, Abdul Hakim Khan, Carlos Garces-R</td>
<td>June 1994</td>
</tr>
<tr>
<td>R-2</td>
<td>Salinity and Sodicity Research in Pakistan - Proceedings of a one-day Workshop</td>
<td>J.W. Kine, Marcel Kuper, Muhammad Aslam</td>
<td>Mar 1995</td>
</tr>
<tr>
<td>R-3</td>
<td>Farmers' Perceptions on Salinity and Sodicity: A case study into farmers' knowledge of salinity and sodicity, and their strategies and practices to deal with salinity and sodicity in their farming systems</td>
<td>Neelije Kielan</td>
<td>May 1996</td>
</tr>
<tr>
<td>R-4</td>
<td>Modelling the Effects of Irrigation Management on Soil Salinity and Crop Transpiration at the Field Level (M.Sc Thesis - published as Research Report)</td>
<td>S.M.P. Smets</td>
<td>June 1996</td>
</tr>
<tr>
<td>R-5</td>
<td>Water Distribution at the Secondary Level in the Chishtian Subdivision</td>
<td>M. Amin K. Tareen, Khalid Mahmood, Anwar Iqbal, Mushtaq Khan, Marcel Kuper</td>
<td>July 1996</td>
</tr>
<tr>
<td>R-6</td>
<td>Farmers Ability to Cope with Salinity and Sodicity: Farmers' perceptions, strategies and practices for dealing with salinity and sodicity in their farming systems</td>
<td>Neelije Kielan</td>
<td>Aug 1996</td>
</tr>
<tr>
<td>R-7</td>
<td>Salinity and Sodicity Effects on Soils and Crops in the Chishtian Sub-Division: Documentation of a Restitution Process</td>
<td>Neelije Kielan, Muhammad Aslam, Ratique Khan, Marcel Kuper</td>
<td>Sept 1996</td>
</tr>
<tr>
<td>R-8</td>
<td>Tertiary Sub-System Management: (Workshop proceedings)</td>
<td>Khalid Riaz, Robina Wahaj</td>
<td>Sept 1996</td>
</tr>
<tr>
<td>R-10</td>
<td>Canal Water Distribution at the Secondary Level in the Punjab, Pakistan (M.Sc Thesis published as Research Report)</td>
<td>Steven Visser</td>
<td>Oct 1996</td>
</tr>
<tr>
<td>Report No.</td>
<td>Title</td>
<td>Author</td>
<td>Year</td>
</tr>
<tr>
<td>-----------</td>
<td>--</td>
<td>---</td>
<td>------</td>
</tr>
<tr>
<td>R-16</td>
<td>Hydraulic Characteristics of Chishtian Sub-division, Fordwah Canal Division</td>
<td>Anwar Iqbal</td>
<td>Nov 1996</td>
</tr>
<tr>
<td>R-17</td>
<td>Hydraulic Characteristics of Irrigation Channels in the Malik Sub-Division, Sadriqa Division, Fordwah Eastern Sadriqa Irrigation and Drainage Project</td>
<td>Khalid Mahmood</td>
<td>Nov 1996</td>
</tr>
<tr>
<td>R-18</td>
<td>Proceedings of National Conference on Managing Irrigation for Environmentally Sustainable Agriculture in Pakistan</td>
<td>M. Badruddin Gaylord V. Skogerboe M.S. Shafique (Editors for all volumes)</td>
<td>Nov 1996</td>
</tr>
<tr>
<td>R-18.1</td>
<td>Volume-I: Inauguration and Deliberations</td>
<td></td>
<td></td>
</tr>
<tr>
<td>R-18.2</td>
<td>Volume-II: Papers on the Theme: Managing Canal Operations</td>
<td></td>
<td></td>
</tr>
<tr>
<td>R-18.3</td>
<td>Volume-III: Papers on the Theme: Water Management Below the Mogha</td>
<td></td>
<td></td>
</tr>
<tr>
<td>R-18.4</td>
<td>Volume-IV: Papers on the Theme: Environmental Management of Irrigated Lands</td>
<td></td>
<td></td>
</tr>
<tr>
<td>R-18.5</td>
<td>Volume-V: Papers on the Theme: Institutional Development</td>
<td></td>
<td></td>
</tr>
<tr>
<td>R-21</td>
<td>Salinity Management Alternatives for the Rechna Doab, Punjab, Pakistan</td>
<td>Gauhar Rehman Waqar A. Jehangir Abdul Rehman Muhammad Aslam Gaylord V. Skogerboe</td>
<td>May 1997</td>
</tr>
<tr>
<td>R-21.1</td>
<td>Volume One: Principal Findings and Implications for Sustainable Irrigated Agriculture</td>
<td></td>
<td></td>
</tr>
<tr>
<td>R-21.2</td>
<td>Volume Two: History of Irrigated Agriculture: A Select Appraisal</td>
<td>Gauhar Rehman Hassan Zia Munawwar Asghar Hussain</td>
<td>Jan 1997</td>
</tr>
<tr>
<td>R-21.5</td>
<td>Volume Five: Predicting Future Tubewell Salinity Discharges</td>
<td>Muhammad Aslam</td>
<td>Jan 1997</td>
</tr>
<tr>
<td>Report No.</td>
<td>Volume</td>
<td>Title</td>
<td>Author</td>
</tr>
<tr>
<td>-----------</td>
<td>--------</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>R-21.7</td>
<td>Volume Seven:</td>
<td>Initiative for Upscaling: Irrigation Subdivision as the Building Block</td>
<td>Gauhar Rehman Asghar Hussain Hassan Zia Munawwar</td>
</tr>
<tr>
<td>R-21.8</td>
<td>Volume Eight:</td>
<td>Options for Sustainability: Sector-Level Allocations and Investments</td>
<td>Abdul Rehman Gauhar Rehman Hassan Zia Munawar</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Salinisation, Alkalisation and Sodification on Irrigated Areas in Pakistan: Characterisation of the geochemical and physical processes and the impact of irrigation water on these processes by the use of a hydro-geochemical model (M.Sc Thesis published as Research Report)</td>
<td>Nicolas Condom</td>
</tr>
<tr>
<td>R-25</td>
<td>Moving Towards Participatory Irrigation Management</td>
<td>D.J. Bandaragoda Yameen Memon</td>
<td>May 1997</td>
</tr>
<tr>
<td>R-28</td>
<td>Integration of Agricultural Commodity Markets in the South Punjab, Pakistan</td>
<td>Zubair Tahir</td>
<td>July 1997</td>
</tr>
<tr>
<td>R-31</td>
<td>An Evaluation of Outlet Calibration Methods: A contribution to the study on Collective Action for Water Management below the Outlet, Hakra 6-R Distributary</td>
<td>Arjen During</td>
<td>Aug 1997</td>
</tr>
<tr>
<td>Report No.</td>
<td>Title</td>
<td>Author</td>
<td>Year</td>
</tr>
<tr>
<td>-----------</td>
<td>--</td>
<td>--</td>
<td>-------</td>
</tr>
<tr>
<td>R-37</td>
<td>Socio-Economic Baseline Survey for a Pilot Project on Water Users</td>
<td>Muhammad Asghar Cheema</td>
<td>Dec</td>
</tr>
<tr>
<td>R-38</td>
<td>Organizations in the Hakra 4-R Distributary Command Area, Punjab.</td>
<td>Zafar Iqbal Mirza</td>
<td>1997</td>
</tr>
<tr>
<td>R-38</td>
<td>Baseline Survey for Farmers Organizations of Shahpur and Mirval</td>
<td>Mehmooid Ul Hassan</td>
<td></td>
</tr>
<tr>
<td>R-38</td>
<td>Small Dams, Punjab, Pakistan.</td>
<td>Don Jayalissa Bandaragoda</td>
<td></td>
</tr>
<tr>
<td>R-39</td>
<td>Monitoring and Evaluation of Irrigation and Drainage Facilities</td>
<td>Muhammad Asghar Cheema</td>
<td>Dec</td>
</tr>
<tr>
<td>R-39.1</td>
<td>for Pilot Distributaries in Sindh Province, Pakistan</td>
<td>Zafar Iqbal Mirza</td>
<td>1997</td>
</tr>
<tr>
<td>R-39.2</td>
<td>Volume One: Objectives, Stakeholders, Approaches and Methodology</td>
<td>Mehmooid Ul Hassan</td>
<td></td>
</tr>
<tr>
<td>R-39.2</td>
<td></td>
<td>Don Jayalissa Bandaragoda</td>
<td></td>
</tr>
<tr>
<td>R-39.3</td>
<td></td>
<td>M.S. Shafique</td>
<td></td>
</tr>
<tr>
<td>R-39.3</td>
<td></td>
<td>B.K. Lashari</td>
<td></td>
</tr>
<tr>
<td>R-39.3</td>
<td>Volume Two: Barej Distributary, Mirpurkhas District</td>
<td>M. Akhtar Bhatti</td>
<td></td>
</tr>
<tr>
<td>R-39.3</td>
<td></td>
<td>Gaylord V. Skogenboe</td>
<td></td>
</tr>
<tr>
<td>R-39.4</td>
<td>Volume Three: Dhor Naro Minor, Nawabshah District</td>
<td>B.K. Lashari</td>
<td>Dec</td>
</tr>
<tr>
<td>R-39.4</td>
<td></td>
<td>Abdul Rehman Soomro</td>
<td>1997</td>
</tr>
<tr>
<td>R-39.4</td>
<td></td>
<td>Nizamuddin Bhashoond</td>
<td></td>
</tr>
<tr>
<td>R-39.4</td>
<td></td>
<td>Muneer Ahmed Mangrio</td>
<td></td>
</tr>
<tr>
<td>R-39.4</td>
<td></td>
<td>Parvez Ahmed Pirzado</td>
<td></td>
</tr>
<tr>
<td>R-39.4</td>
<td></td>
<td>Fateh Mohammad Mari</td>
<td></td>
</tr>
<tr>
<td>R-39.4</td>
<td></td>
<td>M. Akhtar Bhatti</td>
<td></td>
</tr>
<tr>
<td>R-39.4</td>
<td></td>
<td>M.S. Shafique</td>
<td></td>
</tr>
<tr>
<td>R-39.4</td>
<td></td>
<td>Gaylord V. Skogenboe</td>
<td></td>
</tr>
<tr>
<td>R-40</td>
<td>Maintenane Plans for Irrigation Facilities of Pilot Distributaties</td>
<td>B.K. Lashari</td>
<td>Dec</td>
</tr>
<tr>
<td>R-40.1</td>
<td>In Sindh Province, Pakistan.</td>
<td>Abdul Rehman Soomro</td>
<td>1997</td>
</tr>
<tr>
<td>R-40.1</td>
<td>Volume One: Dhor Naro Minor, Nawabshah District</td>
<td>Nizamuddin Bhashoond</td>
<td></td>
</tr>
<tr>
<td>R-40.1</td>
<td></td>
<td>Fateh Mohammad Mari</td>
<td></td>
</tr>
<tr>
<td>R-40.1</td>
<td></td>
<td>Parvez Ahmed Pirzado</td>
<td></td>
</tr>
<tr>
<td>R-40.1</td>
<td></td>
<td>Bakhshal Lashari</td>
<td></td>
</tr>
<tr>
<td>R-40.1</td>
<td></td>
<td>M. Akhtar Bhatti</td>
<td></td>
</tr>
<tr>
<td>R-40.1</td>
<td></td>
<td>Gaylord V. Skogenboe</td>
<td></td>
</tr>
<tr>
<td>R-40.2</td>
<td>Volume Two: Heran Distributary, Sanghar District</td>
<td>Abdul Rehman Soomro</td>
<td>Dec</td>
</tr>
<tr>
<td>R-40.2</td>
<td></td>
<td>Nizamuddin Bhashoond</td>
<td>1997</td>
</tr>
<tr>
<td>R-40.2</td>
<td></td>
<td>Fateh Mohammad Mari</td>
<td></td>
</tr>
<tr>
<td>R-40.2</td>
<td></td>
<td>Parvez Ahmed Pirzado</td>
<td></td>
</tr>
<tr>
<td>R-40.2</td>
<td></td>
<td>Bakhshal Lashari</td>
<td></td>
</tr>
<tr>
<td>R-40.2</td>
<td></td>
<td>M. Akhtar Bhatti</td>
<td></td>
</tr>
<tr>
<td>R-40.2</td>
<td></td>
<td>Gaylord V. Skogenboe</td>
<td></td>
</tr>
<tr>
<td>Report No.</td>
<td>Title</td>
<td>Author</td>
<td>Year</td>
</tr>
<tr>
<td>------------</td>
<td>--</td>
<td>--</td>
<td>------</td>
</tr>
<tr>
<td>R-41</td>
<td>Preliminary Business Plans</td>
<td>Pervaiz Ahmad Pirzada, Mohsin Khatri, Syed Danyal Haider</td>
<td>Dec 1997</td>
</tr>
<tr>
<td>R-41.1</td>
<td>Volume One: Dhoro Naro Minor, Nawabshah District</td>
<td>Mohsin Khatri, Syed Danyal Haider</td>
<td>Dec 1997</td>
</tr>
<tr>
<td>R-41.2</td>
<td>Volume Two: Bareji Distributary, Mirpurkhas District</td>
<td>Muhammad Nadeem, Mohsin Khatri, Syed Danyal Haider</td>
<td>Dec 1997</td>
</tr>
<tr>
<td>R-41.3</td>
<td>Volume Three: Heran Distributary, Sanghar District</td>
<td>Niaz Hussain Sani, Mohsin Khatri, Syed Danyal Haider</td>
<td>Dec 1997</td>
</tr>
<tr>
<td>R-44</td>
<td>Sell-Help Maintenance Activities by the Water Users Federation of Hakra 4-R Distributary</td>
<td>Waheed uz Zaman, Yameen Memon</td>
<td>Feb 1998</td>
</tr>
<tr>
<td>R-46</td>
<td>Tenancy and Water Management in South-Eastern Punjab, Pakistan</td>
<td>Annemieke Terstra</td>
<td>Mar 1998</td>
</tr>
<tr>
<td>R-47</td>
<td>The Collaboration between the International Irrigation Management Institute and Cemagref in Pakistan: Proceeding of a one-day workshop</td>
<td>IIMI, Cemagref</td>
<td>Apr 1998</td>
</tr>
<tr>
<td>R-49</td>
<td>Community Irrigation Systems in the Province of Balochistan</td>
<td>Olaf Verheijen</td>
<td>Apr 1998</td>
</tr>
<tr>
<td>R-50</td>
<td>Modelling Soil Salinity and Sodicity Processes in an Unsaturated Zone using LEACHM: A Case Study from the Chishitan Irrigation Sub-Division</td>
<td>M. Aslam, J.C. van Dam</td>
<td>Apr 1998</td>
</tr>
<tr>
<td>R-52</td>
<td>Comparison of Different Tools to Assess the Water Distribution in Secondary Canals with Ungated Outlets</td>
<td>Mobin ud Din Ahmad, E.G. van Waijten, Marcel Kuper, Steven Visser</td>
<td>May 1998</td>
</tr>
<tr>
<td>R-53</td>
<td>Sediment Behavior of Sangro Distributary, Mirpurkhas Sub-division, Sindh</td>
<td>Gilles Belaud, Abdul Hakeem Khan, Ghulam Nabi</td>
<td>May 1998</td>
</tr>
<tr>
<td>Report No.</td>
<td>Title</td>
<td>Author</td>
<td>Year</td>
</tr>
<tr>
<td>-----------</td>
<td>--</td>
<td>--</td>
<td>-------</td>
</tr>
<tr>
<td>R-55</td>
<td>Development of a Modified Low-Cost Pitot Tube for Measuring Pump Discharges</td>
<td>M.S. Shafique, Nisar Hussain Bukhari, M. Mohsin Hafeez</td>
<td>June</td>
</tr>
<tr>
<td>R-57</td>
<td>Formalization of Water Users Associations by Farmer Leaders of Hakra 4-R Distributary.</td>
<td>Waheed uz Zaman, Nasir Sultan, Bilal Asghar, Muhammad Amjad Kamran</td>
<td>July</td>
</tr>
<tr>
<td>R-58</td>
<td>Water Balance in Dhoro Naro Minor Command Area Sindh, Pakistan</td>
<td>Bea Keller, Gabor Jaimes</td>
<td>July</td>
</tr>
<tr>
<td>R-59</td>
<td>Performance Assessment of the Water Distribution System in the Chishtian Sub-division at the Main and Secondary Canal Level</td>
<td>Zaigham Habib, Marcel Kuper</td>
<td>July</td>
</tr>
<tr>
<td>R-60</td>
<td>Transition from local level Management to State Regulation: Formalization of Water Allocation Rules in Pakistan</td>
<td>Mehmood ul Hassan, Abdul Hamid, D.J. Bandaragoda</td>
<td>Aug</td>
</tr>
<tr>
<td>R-61</td>
<td>Multiple Uses of Irrigation Water in the Hakra 6-R Distributary Command Area, Punjab, Pakistan</td>
<td>Waqar A. Jehangir, Muhammad Mudasser, Mehmood ul Hassan, Zulfqar Ali</td>
<td>Aug</td>
</tr>
<tr>
<td>R-63</td>
<td>Training Farmers to Organize Farmers: Lessons Learned in Social Organization for Irrigated Agriculture at the Hakra 4-R Distributary</td>
<td>Mehmood ul Hassan, Zafar Iqbal Mirza, D.J. Bandaragoda</td>
<td>Sep</td>
</tr>
<tr>
<td>R-64</td>
<td>Physical Characteristics and Operational Performance of Mirpur Khas Sub-Division, Jamrao Canal Division, Nara Circle, Sindh Province, Pakistan</td>
<td>Abdul Hakeem Khan, Rubina Siddiqui, Zahid Hussain Jamali, Muhammad Ali Khwaja, Waqar Hussain Khokhar, Muhammad Hashim Memon, Bakshshal Rashdi, Gaylord V. Skogerboe</td>
<td>Sep</td>
</tr>
<tr>
<td>R-65</td>
<td>GIS Metadata for an Irrigation System</td>
<td>Moin-ud-Din Ahmad, Yann Chemin, Salman Asif, Samia Ali,</td>
<td>Oct</td>
</tr>
<tr>
<td>R-65.1</td>
<td>Volume I: Chishtian Sub-Division</td>
<td></td>
<td>1998</td>
</tr>
<tr>
<td>R-65.2</td>
<td>Volume II: Selected Watercourses within Chishtian Sub-Division</td>
<td>Samia Ali, Yann Chemin, Salman Asif, Moin-ud-Din Ahmad</td>
<td>Oct</td>
</tr>
<tr>
<td>R-66</td>
<td>Application of Crop-Based Irrigation Operations to Chashma Right Bank Canal</td>
<td>Juan Carlos Almralde, Carlos A. Gandarillas, Gaylord V. Skogerboe</td>
<td>Oct</td>
</tr>
<tr>
<td>R-67</td>
<td>A Gender Analysis of Casual Hired Labor in Irrigated Agriculture in the Pakistan Punjab</td>
<td>Cris H. De Klein, Carlos A. Gandarillas, Gaylord V. Skogerboe</td>
<td>Nov</td>
</tr>
<tr>
<td>R-68</td>
<td>Pre-Takeover Comparative Performance of Water Users Organizations of Hakra 4-R Distributary, Punjab, Pakistan</td>
<td>Wahee-uz-Zaman, Abdul Hamid</td>
<td>Nov</td>
</tr>
<tr>
<td>R-69</td>
<td>Preliminary Business Plan for the Water Users Federation of the Hakra 4-R Distributary</td>
<td>Mehmood Ul Hassan, Mohsin Khatri</td>
<td>Nov</td>
</tr>
<tr>
<td>Report No.</td>
<td>Title</td>
<td>Author</td>
<td>Year</td>
</tr>
<tr>
<td>-----------</td>
<td>--</td>
<td>--</td>
<td>-------</td>
</tr>
<tr>
<td>R-70</td>
<td>Waterlogging and Salinity Management in the Sindh Province</td>
<td>Gauhar Rehman, Asghar Hussain, Abdul Hamid, Anjed Siddique Almas, Mehmooda Tabassum, Muhammad Ans Nomani, Kamaran Yousaf</td>
<td>Dec 1998</td>
</tr>
<tr>
<td>R-70.1</td>
<td>Volume I: Irrigated Landscape: Resource Availability across the Hydrological Divides</td>
<td></td>
<td></td>
</tr>
<tr>
<td>R-70.1c</td>
<td>Supplement I.C: Drainage in the LBOD Project: Operational Concerns and Quality of Pumped Effluent</td>
<td>Shaqiqat Ijaz</td>
<td>Dec 1998</td>
</tr>
<tr>
<td>R-72</td>
<td>Scheduling Model for Crop-Based Irrigation Operations</td>
<td>Kobkritt Pongput, Juan Carlos Alurraide, Gaylord V. Skogerboe</td>
<td>Dec 1998</td>
</tr>
<tr>
<td>R-73</td>
<td>Waterlogging, Salinity and Crop Yield Relationships (Joint Report with Mona Reclamation Experimental Project)</td>
<td>Dr. M. Akrum Kahlown, Muhammad Iqbal, Gaylord V. Skogerboe, Saeed ur Rehman</td>
<td>Dec 1998</td>
</tr>
<tr>
<td>R-74</td>
<td>Development and Use of Rectangular Channels with a Single Current Meter Measurement for Recording Farm Water Deliveries</td>
<td>Nisar Hussain Bukhari, Muhammad Mohsin Hafeez, M.S. Shafeek, Gaylord V. Skogerboe</td>
<td>Dec 1998</td>
</tr>
<tr>
<td>R-75</td>
<td>Water Level Fluctuations and Discharge Variability in Mirpurkhas Sub-Division, Jamrao Canal, Nara Circle, Sindh Province, Pakistan</td>
<td>Abdul Hakeem Khan, Bakhshial Lashari, Muhammad Ali Khawaja, Asghar Ali Memnon, Gaylord V. Skogerboe</td>
<td>Dec 1998</td>
</tr>
<tr>
<td>R-76</td>
<td>Short-Term Impacts of Farmers Participation at the Hakra 4-R Distributary</td>
<td>Waheed-uz-Zaman, Rall Starkoff</td>
<td>Dec 1998</td>
</tr>
<tr>
<td>R-77</td>
<td>Environmentally Sustainable Agriculture in the Indus Basin Irrigation System</td>
<td>Gaylord V. Skogerboe, Don Jayatissa Bandaragoda</td>
<td>Dec 1998</td>
</tr>
<tr>
<td>R-78</td>
<td>Maintenance and Operational Activities in the Command Areas of Shahpur and Mirwal Small Dams</td>
<td>Muhammad Akhtar Bhatti, Muhammad Asghar Cheema, Gaylord V. Skogerboe</td>
<td>Feb 1999</td>
</tr>
<tr>
<td>Report No.</td>
<td>Title</td>
<td>Author</td>
<td>Year</td>
</tr>
<tr>
<td>-----------</td>
<td>--</td>
<td>--</td>
<td>----------</td>
</tr>
<tr>
<td>R-79</td>
<td>Hydraulic Simulation to Evaluate and Predict Design and Operational Behavior of Chashma Right Bank Canal</td>
<td>Zaigham Habib, Kamal Shah, Alexandra Vabne, Qalam Ullah, Mobin ud Din Ahmed</td>
<td>March 1999</td>
</tr>
<tr>
<td>R-80</td>
<td>Social Organization for Improved System Management and Sustainable Irrigated Agriculture in Small Dams</td>
<td>Ralf Starkloff, Don Jayatissa Bandaranagoda, Muhammad Asghar Cheema, Muhammad Akhtar Bhatti</td>
<td>Apr 1999</td>
</tr>
<tr>
<td>R-81</td>
<td>Root Zone Salinity and Sodicity Management in the Fordwah Eastern Sadiqia (South) Irrigated Area</td>
<td>Muhammad Aslam, Abdul Hamid, Asghar Hussain, Mehmooda Tahaasam</td>
<td>May 1999</td>
</tr>
<tr>
<td></td>
<td>Joint OFWM-IIMI Report</td>
<td></td>
<td></td>
</tr>
<tr>
<td>R-84</td>
<td>Monitoring and Evaluation of Agro-Economic Benefits and Project Impact for Fordwah Eastern Sadiqia (South) Irrigation and Drainage Project</td>
<td>Muhammad Sadig Hassan, Abdul Raof, M. Akram Shahid, Gaylord V. Skogerboe, Muhammad Aslam, Saeed ur Rehman</td>
<td>June 1999</td>
</tr>
<tr>
<td></td>
<td>Joint WMED-IIMI Report</td>
<td></td>
<td></td>
</tr>
<tr>
<td>R-85</td>
<td>Inflow-Outflow Channel Losses and Canal Lining Cost-effectiveness in the Fordwah Eastern Sadiqia (South) Irrigation and Drainage Project</td>
<td>Gaylord V. Skogerboe, Muhammad Aslam, Mustaq Ahmad Khan, Khalid Mahmod, Shehzad Mahmood, Abdul Hakeem Khan</td>
<td>June 1999</td>
</tr>
<tr>
<td>R-86</td>
<td>Spatial and Temporal Groundwater Recharge Assessment in the Fordwah Eastern Sadiqia (South) Project Area</td>
<td>Muhammad Shafiqat Ejaz, Hafiz M. Nafees Ahmed</td>
<td>June 1999</td>
</tr>
<tr>
<td>R-87</td>
<td>Water Performance Indicators Using Satellite Imagery for the Fordwah Eastern Sadiqia (South) Irrigation and Drainage Project</td>
<td>Thomas Alexandrides, Salman Aasif, Samia Ali</td>
<td>June 1999</td>
</tr>
<tr>
<td>R-88</td>
<td>Water Supply and Water Balance Studies for the Fordwah Eastern Sadiqia (South) Project Area</td>
<td>Bakshahal Lahari, Ineke M. Kalwaj, Albert Reichert</td>
<td>June 1999</td>
</tr>
<tr>
<td>R-89</td>
<td>Institutional Measures for Improved Management of Fordwah Eastern Sadiqia (South) Irrigation and Drainage Project</td>
<td>Wahed uz Zaman, Ralf Starkloff</td>
<td>June 1999</td>
</tr>
<tr>
<td>R-90</td>
<td>Analysis of Water and Salinity Management Alternatives for Increasing Agricultural Production in the Fordwah Eastern Sadiqia (South) Irrigation and Drainage Project</td>
<td>Gaylord V. Skogerboe, Saeed ur Rehman, Muhammad Aslam, Albert Reichert</td>
<td>June 1999</td>
</tr>
</tbody>
</table>